Quantum multi-anomaly detection
- URL: http://arxiv.org/abs/2312.13020v2
- Date: Thu, 22 Aug 2024 21:50:52 GMT
- Title: Quantum multi-anomaly detection
- Authors: Santiago Llorens, Gael Sentís, Ramon Muñoz-Tapia,
- Abstract summary: A source assumed to prepare a specified reference state sometimes prepares an anomalous one.
We analyze the minimum-error protocol and the zero-error (unambiguous) protocol and obtain closed expressions for the success probability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A source assumed to prepare a specified reference state sometimes prepares an anomalous one. We address the task of identifying these anomalous states in a series of $n$ preparations with $k$ anomalies. We analyze the minimum-error protocol and the zero-error (unambiguous) protocol and obtain closed expressions for the success probability when both reference and anomalous states are known to the observer and anomalies can appear equally likely in any position of the preparation series. We find the solution using results from association schemes theory, thus establishing a connection between graph theory and quantum hypothesis testing. In particular, we use the Johnson association scheme which arises naturally from the Gram matrix of this problem. We also study the regime of large $n$ and obtain the expression of the success probability that is non-vanishing. Finally, we address the case in which the observer is blind to the reference and the anomalous states. This scenario requires a universal protocol for which we prove that in the asymptotic limit, the success probability corresponds to the average of the known state scenario.
Related papers
- Barycentric bounds on the error exponents of quantum hypothesis exclusion [7.812210699650153]
We study the optimal error probability of quantum state exclusion from an information-theoretic perspective.
We extend our analysis to the more complicated task of quantum channel exclusion.
arXiv Detail & Related papers (2024-07-18T17:27:36Z) - Kirkwood-Dirac Type Quasiprobabilities as Universal Identifiers of
Nonclassical Quantum Resources [0.0]
We show that a Kirkwood-Dirac type quasiprobability distribution is sufficient to reveal any arbitrary quantum resource.
The quasiprobability reveals a resourceful quantum state by having at least one quasiprobability outcome with a strictly negative numerical value.
arXiv Detail & Related papers (2024-01-07T14:56:32Z) - Depolarizing Reference Devices in Generalized Probabilistic Theories [0.0]
QBism is an interpretation of quantum theory which views quantum mechanics as standard probability theory supplemented with a few extra normative constraints.
We show that, given any reference measurement, a set of post-measurement reference states can always be chosen to give its probability rule very form.
What stands out for the QBist project from this analysis is that it is not only the pure form of the rule that must be understood normatively, but the constants within it as well.
arXiv Detail & Related papers (2023-12-20T06:22:55Z) - Postselected quantum hypothesis testing [9.131273927745731]
We study a variant of quantum hypothesis testing wherein an additional 'inconclusive measurement outcome' is added.
The error probabilities are conditioned on a successful attempt, with inconclusive trials disregarded.
We prove that the error exponent of discriminating any two quantum states $rho$ and $sigma$ is given by the Hilbert projective metric $D_max(|sigma) + D_max(sigma | rho)$ in asymmetric hypothesis testing.
arXiv Detail & Related papers (2022-09-21T18:00:00Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Average-case Speedup for Product Formulas [69.68937033275746]
Product formulas, or Trotterization, are the oldest and still remain an appealing method to simulate quantum systems.
We prove that the Trotter error exhibits a qualitatively better scaling for the vast majority of input states.
Our results open doors to the study of quantum algorithms in the average case.
arXiv Detail & Related papers (2021-11-09T18:49:48Z) - Optimal Adaptive Strategies for Sequential Quantum Hypothesis Testing [87.17253904965372]
We consider sequential hypothesis testing between two quantum states using adaptive and non-adaptive strategies.
We show that these errors decrease exponentially with decay rates given by the measured relative entropies between the two states.
arXiv Detail & Related papers (2021-04-30T00:52:48Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Sequential measurements on qubits by multiple observers: Joint best
guess strategy [0.0]
We study sequential state discrimination measurements performed on the same qubit by subsequent observers.
The goal of the observers is to maximize their joint probability of successfully guessing the state that the qubit was initially prepared in.
arXiv Detail & Related papers (2020-05-24T04:29:23Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z) - Deep Weakly-supervised Anomaly Detection [118.55172352231381]
Pairwise Relation prediction Network (PReNet) learns pairwise relation features and anomaly scores.
PReNet can detect any seen/unseen abnormalities that fit the learned pairwise abnormal patterns.
Empirical results on 12 real-world datasets show that PReNet significantly outperforms nine competing methods in detecting seen and unseen anomalies.
arXiv Detail & Related papers (2019-10-30T00:40:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.