論文の概要: NodeMixup: Tackling Under-Reaching for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2312.13032v2
- Date: Thu, 21 Dec 2023 03:02:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 17:24:15.271982
- Title: NodeMixup: Tackling Under-Reaching for Graph Neural Networks
- Title(参考訳): NodeMixup: グラフニューラルネットワークのアンダーリーチ処理
- Authors: Weigang Lu, Ziyu Guan, Wei Zhao, Yaming Yang, Long Jin
- Abstract要約: グラフニューラルネットワーク(GNN)は,半教師付きノード分類問題の解法として主流となっている。
グラフ内のラベル付きノードの位置分布が不均一であるため、ラベル付きノードはラベルなしノードのごく一部にしかアクセスできないため、アンファンダーリーチングの問題が発生する。
GNNのアンダーリーチングに取り組むために,NodeMixupと呼ばれるアーキテクチャに依存しない手法を提案する。
- 参考スコア(独自算出の注目度): 27.393295683072406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have become mainstream methods for solving the
semi-supervised node classification problem. However, due to the uneven
location distribution of labeled nodes in the graph, labeled nodes are only
accessible to a small portion of unlabeled nodes, leading to the
\emph{under-reaching} issue. In this study, we firstly reveal under-reaching by
conducting an empirical investigation on various well-known graphs. Then, we
demonstrate that under-reaching results in unsatisfactory distribution
alignment between labeled and unlabeled nodes through systematic experimental
analysis, significantly degrading GNNs' performance. To tackle under-reaching
for GNNs, we propose an architecture-agnostic method dubbed NodeMixup. The
fundamental idea is to (1) increase the reachability of labeled nodes by
labeled-unlabeled pairs mixup, (2) leverage graph structures via fusing the
neighbor connections of intra-class node pairs to improve performance gains of
mixup, and (3) use neighbor label distribution similarity incorporating node
degrees to determine sampling weights for node mixup. Extensive experiments
demonstrate the efficacy of NodeMixup in assisting GNNs in handling
under-reaching. The source code is available at
\url{https://github.com/WeigangLu/NodeMixup}.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は,半教師付きノード分類問題の解法として主流となっている。
しかし、グラフ内のラベル付きノードの位置分布が不均一であるため、ラベル付きノードはラベルなしノードのごく一部にしかアクセスできないため、 \emph{under-reaching} 問題が発生する。
本研究では,まず,様々な既知のグラフについて経験的調査を行い,その限界を明らかにする。
そして, ラベル付きノードとラベルなしノード間の不満足な分布アライメントが, 系統的な実験解析によって実現され, GNNの性能は著しく低下することを示した。
GNNのアンダーリーチングに取り組むために,NodeMixupと呼ばれるアーキテクチャに依存しない手法を提案する。
基本的考え方は,(1)ラベル付き未ラベルペアによるラベル付きノードの到達性の向上,(2)クラス内ノードペアの隣り合う接続を融合してミキアップの性能向上を図ること,(3)ノード度を組み込んだ近隣ラベル分布類似度を用いてノードミックスアップのサンプリング重量を決定することである。
大規模な実験では、アンダーリーチング処理においてGNNを支援するNodeMixupの有効性が実証されている。
ソースコードは \url{https://github.com/weiganglu/nodemixup} で入手できる。
関連論文リスト
- NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - GraFN: Semi-Supervised Node Classification on Graph with Few Labels via
Non-Parametric Distribution Assignment [5.879936787990759]
本研究では,グラフの半教師付き手法であるGraFNを提案し,同一クラスに属するノードをグループ化する。
GraFNはグラフ全体からラベル付きノードとアンカーノードからランダムにノードをサンプリングする。
実世界のグラフ上のノード分類において,GraFNが半教師付き手法と自己教師型手法のどちらよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-04T08:22:30Z) - Exploiting Neighbor Effect: Conv-Agnostic GNNs Framework for Graphs with
Heterophily [58.76759997223951]
我々はフォン・ノイマンエントロピーに基づく新しい計量を提案し、GNNのヘテロフィリー問題を再検討する。
また、異種データセット上でのほとんどのGNNの性能を高めるために、Conv-Agnostic GNNフレームワーク(CAGNN)を提案する。
論文 参考訳(メタデータ) (2022-03-19T14:26:43Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [5.431036185361236]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Graph Pointer Neural Networks [11.656981519694218]
上述の課題に対処するために,グラフポインタニューラルネットワーク(GPNN)を提案する。
我々は、多数のマルチホップ地区から最も関連性の高いノードを選択するためにポインタネットワークを利用する。
GPNNは最先端手法の分類性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-10-03T10:18:25Z) - NCGNN: Node-level Capsule Graph Neural Network [45.23653314235767]
ノードレベルカプセルグラフニューラルネットワーク(ncgnn)は、ノードをカプセル群として表現する。
凝集に適したカプセルを適応的に選択する新しい動的ルーティング手法を開発した。
NCGNNは、過度にスムースな問題に対処でき、分類のためのより良いノード埋め込みを生成することで、芸術の状態を上回ります。
論文 参考訳(メタデータ) (2020-12-07T06:46:17Z) - Label-Consistency based Graph Neural Networks for Semi-supervised Node
Classification [47.753422069515366]
グラフニューラルネットワーク(GNN)は,グラフに基づく半教師付きノード分類において顕著な成功を収めている。
本稿では,GNNにおけるノードの受容領域を拡大するために,ノードペアが接続されていないが同一のラベルを持つラベル一貫性に基づくグラフニューラルネットワーク(LC-GNN)を提案する。
ベンチマークデータセットの実験では、LC-GNNはグラフベースの半教師付きノード分類において従来のGNNよりも優れていた。
論文 参考訳(メタデータ) (2020-07-27T11:17:46Z) - Towards Deeper Graph Neural Networks with Differentiable Group
Normalization [61.20639338417576]
グラフニューラルネットワーク(GNN)は、隣接するノードを集約することでノードの表現を学習する。
オーバースムーシングは、レイヤーの数が増えるにつれてGNNのパフォーマンスが制限される重要な問題のひとつです。
2つのオーバースムースなメトリクスと新しいテクニック、すなわち微分可能群正規化(DGN)を導入する。
論文 参考訳(メタデータ) (2020-06-12T07:18:02Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
グラフニューラルネットワーク(GNN)は,グラフデータ上で表現を学習し,予測を行う強力なモデルである。
本稿では,グラフ畳み込み演算子を提案し,隣接するノードの表現の対の相互作用で重み付け和を増大させる。
このフレームワークをBGNN(Bilinear Graph Neural Network)と呼び、隣ノード間の双方向相互作用によるGNN表現能力を向上させる。
論文 参考訳(メタデータ) (2020-02-10T06:43:38Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。