Evolutionary Optimization of 1D-CNN for Non-contact Respiration Pattern Classification
- URL: http://arxiv.org/abs/2312.13035v2
- Date: Tue, 16 Apr 2024 16:08:01 GMT
- Title: Evolutionary Optimization of 1D-CNN for Non-contact Respiration Pattern Classification
- Authors: Md Zobaer Islam, Sabit Ekin, John F. O'Hara, Gary Yen,
- Abstract summary: We present a deep learning-based approach for time-series respiration data classification.
We employed a 1D convolutional neural network (1D-CNN) for classification purposes.
Genetic algorithm was employed to optimize the 1D-CNN architecture to maximize classification accuracy.
- Score: 0.19999259391104385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we present a deep learning-based approach for time-series respiration data classification. The dataset contains regular breathing patterns as well as various forms of abnormal breathing, obtained through non-contact incoherent light-wave sensing (LWS) technology. Given the one-dimensional (1D) nature of the data, we employed a 1D convolutional neural network (1D-CNN) for classification purposes. Genetic algorithm was employed to optimize the 1D-CNN architecture to maximize classification accuracy. Addressing the computational complexity associated with training the 1D-CNN across multiple generations, we implemented transfer learning from a pre-trained model. This approach significantly reduced the computational time required for training, thereby enhancing the efficiency of the optimization process. This study contributes valuable insights into the potential applications of deep learning methodologies for enhancing respiratory anomaly detection through precise and efficient respiration classification.
Related papers
- Research on Early Warning Model of Cardiovascular Disease Based on Computer Deep Learning [5.761426161930679]
This project intends to study a cardiovascular disease risk early warning model based on one-dimensional convolutional neural networks.
The missing values of 13 physiological and symptom indicators such as patient age, blood glucose, cholesterol, and chest pain were filled and Z-score was standardized.
arXiv Detail & Related papers (2024-06-13T07:04:22Z) - Initial Steps Towards Tackling High-dimensional Surrogate Modeling for
Neuroevolution Using Kriging Partial Least Squares [0.0]
Surrogate-assisted evolutionary algorithms (SAEAs) aim to use efficient computational models with the goal of approximating the fitness function in evolutionary computation systems.
An emergent and exciting area that has received little attention from the SAEAs community is in neuroevolution.
We demonstrate how one can use a Kriging Partial Least Squares method that allows efficient computation of good approximate surrogate models.
arXiv Detail & Related papers (2023-05-05T15:17:03Z) - SA-CNN: Application to text categorization issues using simulated
annealing-based convolutional neural network optimization [0.0]
Convolutional neural networks (CNNs) are a representative class of deep learning algorithms.
We introduce SA-CNN neural networks for text classification tasks based on Text-CNN neural networks.
arXiv Detail & Related papers (2023-03-13T14:27:34Z) - Faster Adaptive Federated Learning [84.38913517122619]
Federated learning has attracted increasing attention with the emergence of distributed data.
In this paper, we propose an efficient adaptive algorithm (i.e., FAFED) based on momentum-based variance reduced technique in cross-silo FL.
arXiv Detail & Related papers (2022-12-02T05:07:50Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Optimization of Residual Convolutional Neural Network for
Electrocardiogram Classification [0.9281671380673306]
We propose to optimize the Recurrent one Dimensional Convolutional Neural Network model (R-1D-CNN) with two levels.
At the first level, a residual convolutional layer and one-dimensional convolutional neural layers are trained to learn patient-specific ECG features.
The second level is automatic and based on proposed algorithm based BO.
arXiv Detail & Related papers (2021-12-11T16:52:23Z) - Real-Time Patient-Specific ECG Classification by 1D Self-Operational
Neural Networks [24.226952040270564]
We propose 1D Self-organized Operational Neural Networks (1D Self-ONNs) for ECG classification.
1D Self-ONNs have the utmost advantage and superiority over conventional ONNs where the prior operator search within the operator set library is entirely avoided.
Our results over the MIT-BIH arrhythmia benchmark database demonstrate that 1D Self-ONNs can surpass 1D CNNs with a significant margin.
arXiv Detail & Related papers (2021-09-30T19:37:36Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.