Research on Early Warning Model of Cardiovascular Disease Based on Computer Deep Learning
- URL: http://arxiv.org/abs/2406.08864v1
- Date: Thu, 13 Jun 2024 07:04:22 GMT
- Title: Research on Early Warning Model of Cardiovascular Disease Based on Computer Deep Learning
- Authors: Yuxiang Hu, Jinxin Hu, Ting Xu, Bo Zhang, Jiajie Yuan, Haozhang Deng,
- Abstract summary: This project intends to study a cardiovascular disease risk early warning model based on one-dimensional convolutional neural networks.
The missing values of 13 physiological and symptom indicators such as patient age, blood glucose, cholesterol, and chest pain were filled and Z-score was standardized.
- Score: 5.761426161930679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project intends to study a cardiovascular disease risk early warning model based on one-dimensional convolutional neural networks. First, the missing values of 13 physiological and symptom indicators such as patient age, blood glucose, cholesterol, and chest pain were filled and Z-score was standardized. The convolutional neural network is converted into a 2D matrix, the convolution function of 1,3, and 5 is used for the first-order convolution operation, and the Max Pooling algorithm is adopted for dimension reduction. Set the learning rate and output rate. It is optimized by the Adam algorithm. The result of classification is output by a soft classifier. This study was conducted based on Statlog in the UCI database and heart disease database respectively. The empirical data indicate that the forecasting precision of this technique has been enhanced by 11.2%, relative to conventional approaches, while there is a significant improvement in the logarithmic curve fitting. The efficacy and applicability of the novel approach are corroborated through the examination employing a one-dimensional convolutional neural network.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Evolutionary Optimization of 1D-CNN for Non-contact Respiration Pattern Classification [0.19999259391104385]
We present a deep learning-based approach for time-series respiration data classification.
We employed a 1D convolutional neural network (1D-CNN) for classification purposes.
Genetic algorithm was employed to optimize the 1D-CNN architecture to maximize classification accuracy.
arXiv Detail & Related papers (2023-12-20T13:59:43Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Arrhythmia Classifier Using Convolutional Neural Network with Adaptive
Loss-aware Multi-bit Networks Quantization [4.8538839251819486]
We present a 1-D adaptive loss-aware quantization, achieving a high compression rate that reduces memory consumption by 23.36 times.
We propose a 17 layer end-to-end neural network classifier to classify 17 different rhythm classes trained on the MIT-BIH dataset.
Our study achieves a 1-D convolutional neural network with high performance and low resources consumption, which is hardware-friendly and illustrates the possibility of deployment on wearable devices.
arXiv Detail & Related papers (2022-02-27T14:26:41Z) - Machine Learning-Based Classification Algorithms for the Prediction of
Coronary Heart Diseases [0.0]
The study created and tested several machine-learning-based classification models.
The results show that logistic regression produced the highest performance score on the original dataset.
In conclusion, this study suggests that LR on a well-processed and standardized dataset can predict coronary heart disease with greater accuracy than the other algorithms.
arXiv Detail & Related papers (2021-12-02T18:52:56Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
An artificial neural network (ANN) model is trained using synthetic data to predict the pressure and velocity within the arterial network.
The efficiency of the model was verified using three real geometries of LAD's vessels.
arXiv Detail & Related papers (2021-11-02T23:51:06Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
Heart disease is one of the deadliest diseases which is hampering the lives of many people around the world.
This paper proposes a novel deep learning architecture using a 1D convolutional neural network for classification between healthy and non-healthy persons.
The proposed network achieves over 97% training accuracy and 96% test accuracy on the dataset.
arXiv Detail & Related papers (2021-05-22T22:00:57Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Finding Patient Zero: Learning Contagion Source with Graph Neural
Networks [67.3415507211942]
Locating the source of an epidemic can provide critical insights into the infection's transmission course.
Existing methods use graph-theoretic measures and expensive message-passing algorithms.
We revisit this problem using graph neural networks (GNNs) to learn P0.
arXiv Detail & Related papers (2020-06-21T21:12:44Z) - 1-D Convlutional Neural Networks for the Analysis of Pupil Size
Variations in Scotopic Conditions [79.71065005161566]
1-D convolutional neural network models are trained for classification of short-range sequences.
Model provides prediction with high average accuracy on a hold out test set.
arXiv Detail & Related papers (2020-02-06T17:25:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.