論文の概要: SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2312.13100v2
- Date: Mon, 06 Jan 2025 11:15:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:03:25.646337
- Title: SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning
- Title(参考訳): SEER-ZSL: 汎用ゼロショット学習のための意味エンコーダ強化表現
- Authors: William Heyden, Habib Ullah, M. Salman Siddiqui, Fadi Al Machot,
- Abstract要約: Zero-Shot Learning (ZSL)は、トレーニング中に見えないカテゴリを特定するという課題を示す。
ゼロショット学習のためのセマンティック強化表現(SEER-ZSL)を提案する。
まず,確率的エンコーダを用いて意味のある意味情報を抽出し,意味的一貫性とロバスト性を高めることを目的とする。
第2に、学習したデータ分布を逆向きに訓練した発電機で利用することにより、視覚空間を蒸留し、第3に、未確認なカテゴリを真のデータ多様体にマッピングできるようにする。
- 参考スコア(独自算出の注目度): 0.6792605600335813
- License:
- Abstract: Zero-Shot Learning (ZSL) presents the challenge of identifying categories not seen during training. This task is crucial in domains where it is costly, prohibited, or simply not feasible to collect training data. ZSL depends on a mapping between the visual space and available semantic information. Prior works learn a mapping between spaces that can be exploited during inference. We contend, however, that the disparity between meticulously curated semantic spaces and the inherently noisy nature of real-world data remains a substantial and unresolved challenge. In this paper, we address this by introducing a Semantic Encoder-Enhanced Representations for Zero-Shot Learning (SEER-ZSL). We propose a hybrid strategy to address the generalization gap. First, we aim to distill meaningful semantic information using a probabilistic encoder, enhancing the semantic consistency and robustness. Second, we distill the visual space by exploiting the learned data distribution through an adversarially trained generator. Finally, we align the distilled information, enabling a mapping of unseen categories onto the true data manifold. We demonstrate empirically that this approach yields a model that outperforms the state-of-the-art benchmarks in terms of both generalization and benchmarks across diverse settings with small, medium, and large datasets. The complete code is available on GitHub.
- Abstract(参考訳): Zero-Shot Learning (ZSL)は、トレーニング中に見えないカテゴリを特定するという課題を示す。
このタスクは、費用がかかる、禁止されている、あるいは単にトレーニングデータの収集が不可能な領域において不可欠である。
ZSLは、視覚空間と利用可能な意味情報の間のマッピングに依存する。
先行研究は推論中に活用できる空間間のマッピングを学習する。
しかし、厳密にキュレートされたセマンティック空間と、現実のデータの本質的にノイズのある性質との相違は、依然として相当かつ未解決の課題である、と我々は主張する。
本稿では,ゼロショット学習のためのセマンティックエンコーダ拡張表現(SEER-ZSL)を導入することでこの問題に対処する。
一般化ギャップに対処するためのハイブリッド戦略を提案する。
まず,確率的エンコーダを用いて意味のある意味情報を抽出し,意味的一貫性とロバスト性を高めることを目的とする。
第2に、学習したデータ分布を逆向きに訓練された発電機を通して利用することにより、視覚空間を蒸留する。
最後に、蒸留した情報を整列させて、見えないカテゴリの真のデータ多様体へのマッピングを可能にする。
我々は,本手法が,小規模・中規模・大規模データセットを用いた多種多様な設定における一般化とベンチマークの両方の観点から,最先端のベンチマークよりも優れたモデルをもたらすことを実証的に実証した。
完全なコードはGitHubで入手できる。
関連論文リスト
- Epsilon: Exploring Comprehensive Visual-Semantic Projection for Multi-Label Zero-Shot Learning [23.96220607033524]
マルチラベルシナリオ(MLZSL)におけるゼロショット学習の課題について検討する。
観察されたクラスと補助的な知識に基づいて、サンプル内の複数の見えないクラスを認識するように訓練されている。
本稿では,エプシロンと呼ばれるMLZSLのための新しいビジュアル・セマンティック・フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T09:45:24Z) - Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
継続的な学習は、モデルが学習した知識を維持しながら、新しいデータから学習することを可能にする。
画像のラベル情報で利用できるセマンティック知識は、以前に取得したセマンティッククラスの知識と関連する重要なセマンティック情報を提供する。
テキスト埋め込みを用いて意味的類似性を把握し,タスク内およびタスク間のセマンティックガイダンスの統合を提案する。
論文 参考訳(メタデータ) (2024-08-02T07:51:44Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
本稿では,深層表現学習の補助的正規化として,新たな学習対象符号化を提案する。
具体的には、より差別的な表現を促進するために、マージンベースの三重項損失と、提案した目標符号上の相関整合損失を設計する。
論文 参考訳(メタデータ) (2023-05-30T01:38:54Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
我々は、ゼロショット動作認識(ZSAR)のためのビデオデータとテキストラベルを共同で符号化するクロスモーダルトランスフォーマーベースのフレームワークを提案する。
我々のモデルは概念的に新しいパイプラインを使用し、視覚的表現と視覚的意味的関連をエンドツーエンドで学習する。
実験結果から,本モデルはZSARの芸術的状況に大きく改善され,UCF101,HMDB51,ActivityNetベンチマークデータセット上でトップ1の精度が向上した。
論文 参考訳(メタデータ) (2022-05-03T17:39:27Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
本稿では,特徴のランダムなサブセットを乱してビューを形成するコントラスト学習手法であるSCARFを提案する。
SCARFは既存の戦略を補完し、オートエンコーダのような代替手段より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-29T08:08:33Z) - Zero-Shot Learning Based on Knowledge Sharing [0.0]
Zero-Shot Learning(ZSL)は、ごくわずかなトレーニングデータで分類問題を解決することを目的とした新しい研究です。
本稿では,意味的特徴の表現を充実させるために,知識共有(KS)を導入する。
KSをベースとして,実際の視覚特徴に非常に近い意味的特徴から擬似視覚特徴を生成するために,生成的対向ネットワークを適用した。
論文 参考訳(メタデータ) (2021-02-26T06:43:29Z) - Information Bottleneck Constrained Latent Bidirectional Embedding for
Zero-Shot Learning [59.58381904522967]
本稿では,密な視覚-意味的結合制約を持つ埋め込み型生成モデルを提案する。
視覚空間と意味空間の両方の埋め込みパラメトリック分布を校正する統合潜在空間を学習する。
本手法は, 画像のラベルを生成することにより, トランスダクティブZSL設定に容易に拡張できる。
論文 参考訳(メタデータ) (2020-09-16T03:54:12Z) - Generative Model-driven Structure Aligning Discriminative Embeddings for
Transductive Zero-shot Learning [21.181715602603436]
本稿では、潜在空間における視覚的および意味的なデータを整列する投影関数を学習するためのニューラルネットワークに基づくモデルを提案する。
AWA1, AWA2, CUB, SUN, FLOなどの標準ベンチマークデータセットにおいて, 優れた性能を示す。
また,ラベル付きデータ構造が極めて少ない場合においても,モデルの有効性を示す。
論文 参考訳(メタデータ) (2020-05-09T18:48:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。