SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning
- URL: http://arxiv.org/abs/2312.13100v2
- Date: Mon, 06 Jan 2025 11:15:11 GMT
- Title: SEER-ZSL: Semantic Encoder-Enhanced Representations for Generalized Zero-Shot Learning
- Authors: William Heyden, Habib Ullah, M. Salman Siddiqui, Fadi Al Machot,
- Abstract summary: Zero-Shot Learning (ZSL) presents the challenge of identifying categories not seen during training.<n>We introduce a Semantic-Enhanced Representations for Zero-Shot Learning (SEER-ZSL)<n>First, we aim to distill meaningful semantic information using a probabilistic encoder, enhancing the semantic consistency and robustness.<n>Second, we distill the visual space by exploiting the learned data distribution through an adversarially trained generator. Third, we align the distilled information, enabling a mapping of unseen categories onto the true data manifold.
- Score: 0.6792605600335813
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Zero-Shot Learning (ZSL) presents the challenge of identifying categories not seen during training. This task is crucial in domains where it is costly, prohibited, or simply not feasible to collect training data. ZSL depends on a mapping between the visual space and available semantic information. Prior works learn a mapping between spaces that can be exploited during inference. We contend, however, that the disparity between meticulously curated semantic spaces and the inherently noisy nature of real-world data remains a substantial and unresolved challenge. In this paper, we address this by introducing a Semantic Encoder-Enhanced Representations for Zero-Shot Learning (SEER-ZSL). We propose a hybrid strategy to address the generalization gap. First, we aim to distill meaningful semantic information using a probabilistic encoder, enhancing the semantic consistency and robustness. Second, we distill the visual space by exploiting the learned data distribution through an adversarially trained generator. Finally, we align the distilled information, enabling a mapping of unseen categories onto the true data manifold. We demonstrate empirically that this approach yields a model that outperforms the state-of-the-art benchmarks in terms of both generalization and benchmarks across diverse settings with small, medium, and large datasets. The complete code is available on GitHub.
Related papers
- Epsilon: Exploring Comprehensive Visual-Semantic Projection for Multi-Label Zero-Shot Learning [23.96220607033524]
This paper investigates a challenging problem of zero-shot learning in the multi-label scenario (MLZSL)
It is trained to recognize multiple unseen classes within a sample based on seen classes and auxiliary knowledge.
We propose a novel and comprehensive visual-semantic framework for MLZSL, dubbed Epsilon, to fully make use of such properties.
arXiv Detail & Related papers (2024-08-22T09:45:24Z) - Exploiting the Semantic Knowledge of Pre-trained Text-Encoders for Continual Learning [70.64617500380287]
Continual learning allows models to learn from new data while retaining previously learned knowledge.
The semantic knowledge available in the label information of the images, offers important semantic information that can be related with previously acquired knowledge of semantic classes.
We propose integrating semantic guidance within and across tasks by capturing semantic similarity using text embeddings.
arXiv Detail & Related papers (2024-08-02T07:51:44Z) - Learning at a Glance: Towards Interpretable Data-limited Continual Semantic Segmentation via Semantic-Invariance Modelling [21.114359437665364]
Continual semantic segmentation (CSS) based on incremental learning (IL) is a great endeavour in developing human-like segmentation models.
Current CSS approaches encounter challenges in the trade-off between preserving old knowledge and learning new ones.
We present Learning at a Glance (LAG), an efficient, robust, human-like and interpretable approach for CSS.
arXiv Detail & Related papers (2024-07-22T07:17:52Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Beyond Prototypes: Semantic Anchor Regularization for Better
Representation Learning [82.29761875805369]
One of the ultimate goals of representation learning is to achieve compactness within a class and well-separability between classes.
We propose a novel perspective to use pre-defined class anchors serving as feature centroid to unidirectionally guide feature learning.
The proposed Semantic Anchor Regularization (SAR) can be used in a plug-and-play manner in the existing models.
arXiv Detail & Related papers (2023-12-19T05:52:38Z) - Dual Feature Augmentation Network for Generalized Zero-shot Learning [14.410978100610489]
Zero-shot learning (ZSL) aims to infer novel classes without training samples by transferring knowledge from seen classes.
Existing embedding-based approaches for ZSL typically employ attention mechanisms to locate attributes on an image.
We propose a novel Dual Feature Augmentation Network (DFAN), which comprises two feature augmentation modules.
arXiv Detail & Related papers (2023-09-25T02:37:52Z) - Improving Deep Representation Learning via Auxiliary Learnable Target Coding [69.79343510578877]
This paper introduces a novel learnable target coding as an auxiliary regularization of deep representation learning.
Specifically, a margin-based triplet loss and a correlation consistency loss on the proposed target codes are designed to encourage more discriminative representations.
arXiv Detail & Related papers (2023-05-30T01:38:54Z) - Exploiting Semantic Attributes for Transductive Zero-Shot Learning [97.61371730534258]
Zero-shot learning aims to recognize unseen classes by generalizing the relation between visual features and semantic attributes learned from the seen classes.
We present a novel transductive ZSL method that produces semantic attributes of the unseen data and imposes them on the generative process.
Experiments on five standard benchmarks show that our method yields state-of-the-art results for zero-shot learning.
arXiv Detail & Related papers (2023-03-17T09:09:48Z) - GSMFlow: Generation Shifts Mitigating Flow for Generalized Zero-Shot
Learning [55.79997930181418]
Generalized Zero-Shot Learning aims to recognize images from both the seen and unseen classes by transferring semantic knowledge from seen to unseen classes.
It is a promising solution to take the advantage of generative models to hallucinate realistic unseen samples based on the knowledge learned from the seen classes.
We propose a novel flow-based generative framework that consists of multiple conditional affine coupling layers for learning unseen data generation.
arXiv Detail & Related papers (2022-07-05T04:04:37Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
We present a cross-modal Transformer-based framework, which jointly encodes video data and text labels for zero-shot action recognition (ZSAR)
Our model employs a conceptually new pipeline by which visual representations are learned in conjunction with visual-semantic associations in an end-to-end manner.
Experiment results show our model considerably improves upon the state of the arts in ZSAR, reaching encouraging top-1 accuracy on UCF101, HMDB51, and ActivityNet benchmark datasets.
arXiv Detail & Related papers (2022-05-03T17:39:27Z) - Learning What Not to Segment: A New Perspective on Few-Shot Segmentation [63.910211095033596]
Recently few-shot segmentation (FSS) has been extensively developed.
This paper proposes a fresh and straightforward insight to alleviate the problem.
In light of the unique nature of the proposed approach, we also extend it to a more realistic but challenging setting.
arXiv Detail & Related papers (2022-03-15T03:08:27Z) - Bias-Eliminated Semantic Refinement for Any-Shot Learning [27.374052527155623]
We refine the coarse-grained semantic description for any-shot learning tasks.
A new model, namely, the semantic refinement Wasserstein generative adversarial network (SRWGAN) model, is designed.
We extensively evaluate model performance on six benchmark datasets.
arXiv Detail & Related papers (2022-02-10T04:15:50Z) - Self-Supervised Class Incremental Learning [51.62542103481908]
Existing Class Incremental Learning (CIL) methods are based on a supervised classification framework sensitive to data labels.
When updating them based on the new class data, they suffer from catastrophic forgetting: the model cannot discern old class data clearly from the new.
In this paper, we explore the performance of Self-Supervised representation learning in Class Incremental Learning (SSCIL) for the first time.
arXiv Detail & Related papers (2021-11-18T06:58:19Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - SCARF: Self-Supervised Contrastive Learning using Random Feature
Corruption [72.35532598131176]
We propose SCARF, a technique for contrastive learning, where views are formed by corrupting a random subset of features.
We show that SCARF complements existing strategies and outperforms alternatives like autoencoders.
arXiv Detail & Related papers (2021-06-29T08:08:33Z) - Zero-Shot Learning Based on Knowledge Sharing [0.0]
Zero-Shot Learning (ZSL) is an emerging research that aims to solve the classification problems with very few training data.
This paper introduces knowledge sharing (KS) to enrich the representation of semantic features.
Based on KS, we apply a generative adversarial network to generate pseudo visual features from semantic features that are very close to the real visual features.
arXiv Detail & Related papers (2021-02-26T06:43:29Z) - Adaptive Prototypical Networks with Label Words and Joint Representation
Learning for Few-Shot Relation Classification [17.237331828747006]
This work focuses on few-shot relation classification (FSRC)
We propose an adaptive mixture mechanism to add label words to the representation of the class prototype.
Experiments have been conducted on FewRel under different few-shot (FS) settings.
arXiv Detail & Related papers (2021-01-10T11:25:42Z) - Information Bottleneck Constrained Latent Bidirectional Embedding for
Zero-Shot Learning [59.58381904522967]
We propose a novel embedding based generative model with a tight visual-semantic coupling constraint.
We learn a unified latent space that calibrates the embedded parametric distributions of both visual and semantic spaces.
Our method can be easily extended to transductive ZSL setting by generating labels for unseen images.
arXiv Detail & Related papers (2020-09-16T03:54:12Z) - Generative Model-driven Structure Aligning Discriminative Embeddings for
Transductive Zero-shot Learning [21.181715602603436]
We propose a neural network-based model for learning a projection function which aligns the visual and semantic data in the latent space.
We show superior performance on standard benchmark datasets AWA1, AWA2, CUB, SUN, FLO, and.
We also show the efficacy of our model in the case of extremely less labelled data regime.
arXiv Detail & Related papers (2020-05-09T18:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.