SpecNeRF: Gaussian Directional Encoding for Specular Reflections
- URL: http://arxiv.org/abs/2312.13102v3
- Date: Thu, 16 May 2024 10:18:38 GMT
- Title: SpecNeRF: Gaussian Directional Encoding for Specular Reflections
- Authors: Li Ma, Vasu Agrawal, Haithem Turki, Changil Kim, Chen Gao, Pedro Sander, Michael Zollhöfer, Christian Richardt,
- Abstract summary: We propose a learnable Gaussian directional encoding to better model the view-dependent effects under near-field lighting conditions.
Our new directional encoding captures the spatially-varying nature of near-field lighting and emulates the behavior of prefiltered environment maps.
It enables the efficient evaluation of preconvolved specular color at any 3D location with varying roughness coefficients.
- Score: 43.110815974867315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural radiance fields have achieved remarkable performance in modeling the appearance of 3D scenes. However, existing approaches still struggle with the view-dependent appearance of glossy surfaces, especially under complex lighting of indoor environments. Unlike existing methods, which typically assume distant lighting like an environment map, we propose a learnable Gaussian directional encoding to better model the view-dependent effects under near-field lighting conditions. Importantly, our new directional encoding captures the spatially-varying nature of near-field lighting and emulates the behavior of prefiltered environment maps. As a result, it enables the efficient evaluation of preconvolved specular color at any 3D location with varying roughness coefficients. We further introduce a data-driven geometry prior that helps alleviate the shape radiance ambiguity in reflection modeling. We show that our Gaussian directional encoding and geometry prior significantly improve the modeling of challenging specular reflections in neural radiance fields, which helps decompose appearance into more physically meaningful components.
Related papers
- PBIR-NIE: Glossy Object Capture under Non-Distant Lighting [30.325872237020395]
Glossy objects present a significant challenge for 3D reconstruction from multi-view input images under natural lighting.
We introduce PBIR-NIE, an inverse rendering framework designed to holistically capture the geometry, material attributes, and surrounding illumination of such objects.
arXiv Detail & Related papers (2024-08-13T13:26:24Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - Depth Reconstruction with Neural Signed Distance Fields in Structured Light Systems [15.603880588503355]
We introduce a novel depth estimation technique for multi-frame structured light setups using neural implicit representations of 3D space.
Our approach employs a neural signed distance field (SDF), trained through self-supervised differentiable rendering.
arXiv Detail & Related papers (2024-05-20T13:24:35Z) - GNeRP: Gaussian-guided Neural Reconstruction of Reflective Objects with Noisy Polarization Priors [8.8400072344375]
Learning surfaces from neural radiance field (NeRF) became a rising topic in Multi-View Stereo (MVS)
Recent methods demonstrated their ability to reconstruct accurate 3D shapes of Lambertian scenes.
However, their results on reflective scenes are unsatisfactory due to the entanglement of specular radiance and complicated geometry.
arXiv Detail & Related papers (2024-03-18T15:58:03Z) - Spatiotemporally Consistent HDR Indoor Lighting Estimation [66.26786775252592]
We propose a physically-motivated deep learning framework to solve the indoor lighting estimation problem.
Given a single LDR image with a depth map, our method predicts spatially consistent lighting at any given image position.
Our framework achieves photorealistic lighting prediction with higher quality compared to state-of-the-art single-image or video-based methods.
arXiv Detail & Related papers (2023-05-07T20:36:29Z) - Neural Fields meet Explicit Geometric Representation for Inverse
Rendering of Urban Scenes [62.769186261245416]
We present a novel inverse rendering framework for large urban scenes capable of jointly reconstructing the scene geometry, spatially-varying materials, and HDR lighting from a set of posed RGB images with optional depth.
Specifically, we use a neural field to account for the primary rays, and use an explicit mesh (reconstructed from the underlying neural field) for modeling secondary rays that produce higher-order lighting effects such as cast shadows.
arXiv Detail & Related papers (2023-04-06T17:51:54Z) - NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination [48.42173911185454]
Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
arXiv Detail & Related papers (2023-03-29T12:05:19Z) - Extracting Triangular 3D Models, Materials, and Lighting From Images [59.33666140713829]
We present an efficient method for joint optimization of materials and lighting from multi-view image observations.
We leverage meshes with spatially-varying materials and environment that can be deployed in any traditional graphics engine.
arXiv Detail & Related papers (2021-11-24T13:58:20Z) - NeRFactor: Neural Factorization of Shape and Reflectance Under an
Unknown Illumination [60.89737319987051]
We address the problem of recovering shape and spatially-varying reflectance of an object from posed multi-view images of the object illuminated by one unknown lighting condition.
This enables the rendering of novel views of the object under arbitrary environment lighting and editing of the object's material properties.
arXiv Detail & Related papers (2021-06-03T16:18:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.