NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination
- URL: http://arxiv.org/abs/2303.16617v2
- Date: Thu, 14 Sep 2023 09:02:48 GMT
- Title: NeFII: Inverse Rendering for Reflectance Decomposition with Near-Field
Indirect Illumination
- Authors: Haoqian Wu, Zhipeng Hu, Lincheng Li, Yongqiang Zhang, Changjie Fan,
Xin Yu
- Abstract summary: Inverse rendering methods aim to estimate geometry, materials and illumination from multi-view RGB images.
We propose an end-to-end inverse rendering pipeline that decomposes materials and illumination from multi-view images.
- Score: 48.42173911185454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inverse rendering methods aim to estimate geometry, materials and
illumination from multi-view RGB images. In order to achieve better
decomposition, recent approaches attempt to model indirect illuminations
reflected from different materials via Spherical Gaussians (SG), which,
however, tends to blur the high-frequency reflection details. In this paper, we
propose an end-to-end inverse rendering pipeline that decomposes materials and
illumination from multi-view images, while considering near-field indirect
illumination. In a nutshell, we introduce the Monte Carlo sampling based path
tracing and cache the indirect illumination as neural radiance, enabling a
physics-faithful and easy-to-optimize inverse rendering method. To enhance
efficiency and practicality, we leverage SG to represent the smooth environment
illuminations and apply importance sampling techniques. To supervise indirect
illuminations from unobserved directions, we develop a novel radiance
consistency constraint between implicit neural radiance and path tracing
results of unobserved rays along with the joint optimization of materials and
illuminations, thus significantly improving the decomposition performance.
Extensive experiments demonstrate that our method outperforms the
state-of-the-art on multiple synthetic and real datasets, especially in terms
of inter-reflection decomposition.Our code and data are available at
https://woolseyyy.github.io/nefii/.
Related papers
- Photometric Inverse Rendering: Shading Cues Modeling and Surface Reflectance Regularization [46.146783750386994]
We propose a new method for neural inverse rendering.
Our method jointly optimize the light source position to account for the self-shadows in images.
To enhance surface reflectance decomposition, we introduce a new regularization.
arXiv Detail & Related papers (2024-08-13T11:39:14Z) - MIRReS: Multi-bounce Inverse Rendering using Reservoir Sampling [17.435649250309904]
We present MIRReS, a novel two-stage inverse rendering framework.
Our method extracts an explicit geometry (triangular mesh) in stage one, and introduces a more realistic physically-based inverse rendering model.
Our method effectively estimates indirect illumination, including self-shadowing and internal reflections.
arXiv Detail & Related papers (2024-06-24T07:00:57Z) - Diffusion Posterior Illumination for Ambiguity-aware Inverse Rendering [63.24476194987721]
Inverse rendering, the process of inferring scene properties from images, is a challenging inverse problem.
Most existing solutions incorporate priors into the inverse-rendering pipeline to encourage plausible solutions.
We propose a novel scheme that integrates a denoising probabilistic diffusion model pre-trained on natural illumination maps into an optimization framework.
arXiv Detail & Related papers (2023-09-30T12:39:28Z) - TensoIR: Tensorial Inverse Rendering [51.57268311847087]
TensoIR is a novel inverse rendering approach based on tensor factorization and neural fields.
TensoRF is a state-of-the-art approach for radiance field modeling.
arXiv Detail & Related papers (2023-04-24T21:39:13Z) - Physics-based Indirect Illumination for Inverse Rendering [70.27534648770057]
We present a physics-based inverse rendering method that learns the illumination, geometry, and materials of a scene from posed multi-view RGB images.
As a side product, our physics-based inverse rendering model also facilitates flexible and realistic material editing as well as relighting.
arXiv Detail & Related papers (2022-12-09T07:33:49Z) - Modeling Indirect Illumination for Inverse Rendering [31.734819333921642]
In this paper, we propose a novel approach to efficiently recovering spatially-varying indirect illumination.
The key insight is that indirect illumination can be conveniently derived from the neural radiance field learned from input images.
Experiments on both synthetic and real data demonstrate the superior performance of our approach compared to previous work.
arXiv Detail & Related papers (2022-04-14T09:10:55Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - PhySG: Inverse Rendering with Spherical Gaussians for Physics-based
Material Editing and Relighting [60.75436852495868]
We present PhySG, an inverse rendering pipeline that reconstructs geometry, materials, and illumination from scratch from RGB input images.
We demonstrate, with both synthetic and real data, that our reconstructions not only enable rendering of novel viewpoints, but also physics-based appearance editing of materials and illumination.
arXiv Detail & Related papers (2021-04-01T17:59:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.