論文の概要: Efficient Verification-Based Face Identification
- arxiv url: http://arxiv.org/abs/2312.13240v2
- Date: Sat, 25 May 2024 17:57:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 08:15:32.439048
- Title: Efficient Verification-Based Face Identification
- Title(参考訳): 効率的な検証に基づく顔の同定
- Authors: Amit Rozner, Barak Battash, Ofir Lindenbaum, Lior Wolf,
- Abstract要約: 効率の良いニューラルモデルで顔認証を行う際の問題点を$f$で検討する。
我々のモデルは、23kパラメータと5M浮動小数点演算(FLOPS)しか必要としない、かなり小さな$f$に導かれる。
我々は、6つの顔認証データセットを用いて、我々の手法が最先端のモデルよりも同等か優れていることを示す。
- 参考スコア(独自算出の注目度): 50.616875565173274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of performing face verification with an efficient neural model $f$. The efficiency of $f$ stems from simplifying the face verification problem from an embedding nearest neighbor search into a binary problem; each user has its own neural network $f$. To allow information sharing between different individuals in the training set, we do not train $f$ directly but instead generate the model weights using a hypernetwork $h$. This leads to the generation of a compact personalized model for face identification that can be deployed on edge devices. Key to the method's success is a novel way of generating hard negatives and carefully scheduling the training objectives. Our model leads to a substantially small $f$ requiring only 23k parameters and 5M floating point operations (FLOPS). We use six face verification datasets to demonstrate that our method is on par or better than state-of-the-art models, with a significantly reduced number of parameters and computational burden. Furthermore, we perform an extensive ablation study to demonstrate the importance of each element in our method.
- Abstract(参考訳): 効率の良いニューラルモデルで顔認証を行う際の問題点を$f$で検討する。
$f$の効率性は、顔認証問題を、最も近い隣人探索からバイナリ問題への埋め込みから単純化することにある。
トレーニングセット内の異なる個人間での情報共有を可能にするため、直接$f$をトレーニングするのではなく、ハイパーネットワークの$h$を使ってモデルウェイトを生成する。
これにより、エッジデバイスにデプロイ可能な、顔識別のためのコンパクトなパーソナライズされたモデルが生成される。
この手法の成功の鍵は、ハードネガティブを発生させ、トレーニング目標を慎重にスケジューリングする新しい方法である。
我々のモデルは、23kパラメータと5M浮動小数点演算(FLOPS)しか必要としない、かなり小さな$f$につながる。
我々は、6つの顔検証データセットを用いて、我々の手法が最先端モデルと同等かそれ以上であり、パラメータの数と計算負荷が大幅に削減されていることを示す。
さらに,本手法における各要素の重要性を実証するために,広範囲にわたるアブレーション研究を行った。
関連論文リスト
- Truncated Consistency Models [57.50243901368328]
トレーニング一貫性モデルは、PF ODE 軌道に沿ったすべての中間点を対応するエンドポイントにマッピングする学習を必要とする。
このトレーニングパラダイムが一貫性モデルの1ステップ生成性能を制限することを実証的に見出した。
整合性関数の新しいパラメータ化と2段階の訓練手順を提案し,時間外学習が崩壊することを防ぐ。
論文 参考訳(メタデータ) (2024-10-18T22:38:08Z) - FINE: Factorizing Knowledge for Initialization of Variable-sized Diffusion Models [35.40065954148091]
FINEはLearngeneフレームワークに基づく、事前訓練されたモデルを利用した下流ネットワークの初期化手法である。
事前学習された知識を行列の積(例えば$U$, $Sigma$, $V$)に分解する。
これは、特により小さなモデルにおいて、直接事前訓練よりも一貫して優れており、可変モデルのサイズで最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-09-28T08:57:17Z) - Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
ディープジェネレータ技術は、区別がつかない高品質のフェイクビデオを制作し、深刻な社会的脅威をもたらす可能性がある。
従来の偽造検出手法は、データを直接集中的に訓練する。
本稿では,個人化表現を用いた新しいフェデレーション顔偽造検出学習を提案する。
論文 参考訳(メタデータ) (2024-06-17T02:20:30Z) - Robust Few-shot Learning Without Using any Adversarial Samples [19.34427461937382]
高度なメタラーニング技術を用いて、数発の問題をロバストネスの目的と組み合わせる試みがいくつかなされている。
逆のサンプルを一切必要としない単純で効果的な代替案を提案する。
ヒトの認知的意思決定プロセスにインスパイアされ、ベースクラスデータとそれに対応する低周波サンプルの高レベル特徴マッチングを強制する。
論文 参考訳(メタデータ) (2022-11-03T05:58:26Z) - Training Neural Networks with Fixed Sparse Masks [19.58969772430058]
最近の研究では、トレーニング中にモデルのパラメータの小さなサブセットだけを更新できることが示されている。
モデルのパラメータに固定されたスパースマスクを誘導し、サブセットを選択して複数のイテレーションで更新できることが示される。
論文 参考訳(メタデータ) (2021-11-18T18:06:01Z) - Deep learning for inverse problems with unknown operator [0.0]
フォワード演算子$T$が未知の逆問題では、関数$f_i$とノイズの多いイメージ$Tf_i$からなるトレーニングデータにアクセスできます。
本稿では,データに最小限の仮定を必要とする新しい手法を提案し,学習点数と雑音レベルに依存する再現率を示す。
論文 参考訳(メタデータ) (2021-08-05T17:21:12Z) - ${\rm N{\small ode}S{\small ig}}$: Random Walk Diffusion meets Hashing
for Scalable Graph Embeddings [7.025709586759654]
$rm Nsmall odeSsmall ig$は、バイナリノード表現を計算するスケーラブルな埋め込みモデルである。
$rm N Small odeS Small ig$は、ランダムなウォーク拡散確率を、安定したランダムなプロジェクションハッシュを通じて活用する。
論文 参考訳(メタデータ) (2020-10-01T09:07:37Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
NLPモデルが大きくなればなるほど、訓練されたモデルを実行するには、金銭的・環境的なコストを発生させる重要な計算資源が必要である。
我々は、推論中、早期(かつ高速)の"exit"を可能にする文脈表現微調整の修正を提案する。
3つのテキスト分類データセットと2つの自然言語推論ベンチマークの2つのタスクで、5つの異なるデータセットに対して提案した修正を検証した。
論文 参考訳(メタデータ) (2020-04-16T04:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。