論文の概要: Enhancing Neural Training via a Correlated Dynamics Model
- arxiv url: http://arxiv.org/abs/2312.13247v2
- Date: Tue, 23 Jul 2024 11:42:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 23:13:09.802356
- Title: Enhancing Neural Training via a Correlated Dynamics Model
- Title(参考訳): 相関ダイナミクスモデルによるニューラルトレーニングの強化
- Authors: Jonathan Brokman, Roy Betser, Rotem Turjeman, Tom Berkov, Ido Cohen, Guy Gilboa,
- Abstract要約: 相関モード分解(CMD)は、パラメータ空間をグループにクラスタリングし、エポック間の同期動作を表示するアルゴリズムである。
トレーニングと同時に動作するように設計された効率的なCMDバリアントを導入する。
実験の結果,CMD は画像分類のコンパクトなモデル化のための最先端手法を超越していることがわかった。
- 参考スコア(独自算出の注目度): 2.9302545029880394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As neural networks grow in scale, their training becomes both computationally demanding and rich in dynamics. Amidst the flourishing interest in these training dynamics, we present a novel observation: Parameters during training exhibit intrinsic correlations over time. Capitalizing on this, we introduce Correlation Mode Decomposition (CMD). This algorithm clusters the parameter space into groups, termed modes, that display synchronized behavior across epochs. This enables CMD to efficiently represent the training dynamics of complex networks, like ResNets and Transformers, using only a few modes. Moreover, test set generalization is enhanced. We introduce an efficient CMD variant, designed to run concurrently with training. Our experiments indicate that CMD surpasses the state-of-the-art method for compactly modeled dynamics on image classification. Our modeling can improve training efficiency and lower communication overhead, as shown by our preliminary experiments in the context of federated learning.
- Abstract(参考訳): ニューラルネットワークの規模が大きくなるにつれて、そのトレーニングは計算的に要求され、ダイナミクスに富んでいる。
これらのトレーニングダイナミクスへの関心が高まっている中で、新しい観察結果が提示される:トレーニング中のパラメータは時間とともに固有の相関を示す。
これに基づいて相関モード分解(CMD)を導入する。
このアルゴリズムは、パラメータ空間を「モード」と呼ばれるグループにまとめ、エポック間の同期動作を表示する。
これにより、CMDは数モードのみを使用して、ResNetsやTransformersのような複雑なネットワークのトレーニングダイナミクスを効率的に表現できる。
さらに、テストセットの一般化が強化される。
トレーニングと同時に動作するように設計された効率的なCMDバリアントを導入する。
実験の結果,CMD は画像分類のコンパクトなモデル化のための最先端手法を超越していることがわかった。
我々のモデリングは、フェデレート学習の文脈における予備実験で示されているように、訓練効率の向上と通信オーバーヘッドの低減を可能にする。
関連論文リスト
- Analyzing and Improving the Training Dynamics of Diffusion Models [36.37845647984578]
一般的なADM拡散モデルアーキテクチャにおいて、不均一かつ非効率なトレーニングの原因をいくつか特定し、修正する。
この哲学の体系的な応用は、観測されたドリフトと不均衡を排除し、同じ計算複雑性でネットワークをかなり良くする。
論文 参考訳(メタデータ) (2023-12-05T11:55:47Z) - Dynamic Tensor Decomposition via Neural Diffusion-Reaction Processes [24.723536390322582]
テンソル分解は マルチウェイデータ解析の 重要なツールです
動的EMbedIngs fOr Dynamic Algorithm dEcomposition (DEMOTE)を提案する。
シミュレーション研究と実世界の応用の両方において,本手法の利点を示す。
論文 参考訳(メタデータ) (2023-10-30T15:49:45Z) - Efficient Adaptive Human-Object Interaction Detection with
Concept-guided Memory [64.11870454160614]
概念誘導メモリ(ADA-CM)を用いた適応型HOI検出器を提案する。
ADA-CMには2つの操作モードがある。最初のモードでは、トレーニング不要のパラダイムで新しいパラメータを学習することなくチューニングできる。
提案手法は, HICO-DET と V-COCO のデータセットに対して, より少ないトレーニング時間で, 最新技術による競合的な結果を得る。
論文 参考訳(メタデータ) (2023-09-07T13:10:06Z) - Latent State Models of Training Dynamics [51.88132043461152]
異なるランダムなシードでモデルをトレーニングし、トレーニングを通じてさまざまなメトリクスを計算します。
次に、結果のメトリクス列に隠れマルコフモデル(HMM)を適合させる。
我々はHMM表現を用いて相転移を研究し、収束を遅くする潜伏状態(detour state)を特定する。
論文 参考訳(メタデータ) (2023-08-18T13:20:08Z) - Contrastive-Signal-Dependent Plasticity: Forward-Forward Learning of
Spiking Neural Systems [73.18020682258606]
我々は、ニューロンの個々の層が並列に機能する、スパイキングニューロンユニットからなる神経模倣アーキテクチャを開発する。
コントラスト信号依存塑性(CSDP)と呼ばれるイベントベース前方学習の一般化を提案する。
いくつかのパターンデータセットに対する実験結果から,CSDPプロセスは分類と再構成の両方が可能な動的再帰スパイクネットワークのトレーニングに有効であることが示された。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Identifying Equivalent Training Dynamics [3.793387630509845]
トポロジカル共役性は、動的同値の正確な定義を与える。
共役および非共役のトレーニングダイナミクスを識別するフレームワークを開発する。
この結果はフレームワークの柔軟性を示し、トレーニングダイナミクスに新たな光を放つ可能性を強調します。
論文 参考訳(メタデータ) (2023-02-17T22:15:20Z) - The Underlying Correlated Dynamics in Neural Training [6.385006149689549]
ニューラルネットワークのトレーニングは、計算集約的なタスクである。
本稿では,パラメータのダイナミクスの相関に基づくモデルを提案する。
この表現は、基礎となるトレーニングダイナミクスの理解を深め、より良い加速技術を設計するための道を開くことができる。
論文 参考訳(メタデータ) (2022-12-18T08:34:11Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
この研究は、データ駆動型手法が動的環境で継続的に学習し、最適化できる方法論を開発する。
本稿では,無線システム学習のモデリングプロセスに連続学習の概念を構築することを提案する。
我々の設計は、異なるデータサンプル間で「一定の公正性を保証する」新しいmin-maxの定式化に基づいている。
論文 参考訳(メタデータ) (2020-11-16T08:24:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。