論文の概要: Generative Multimodal Models are In-Context Learners
- arxiv url: http://arxiv.org/abs/2312.13286v2
- Date: Wed, 8 May 2024 03:09:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 18:50:56.609865
- Title: Generative Multimodal Models are In-Context Learners
- Title(参考訳): 生成的マルチモーダルモデルは文脈学習者である
- Authors: Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang, Xinlong Wang,
- Abstract要約: 我々は37億のパラメータを持つ生成的マルチモーダルモデルであるEmu2を紹介し、大規模マルチモーダルシーケンスで訓練する。
Emu2は、マルチモーダルなインコンテキスト学習能力を示し、オンザフライ推論を必要とするタスクを解決しようとさえしている。
- 参考スコア(独自算出の注目度): 60.50927925426832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human ability to easily solve multimodal tasks in context (i.e., with only a few demonstrations or simple instructions), is what current multimodal systems have largely struggled to imitate. In this work, we demonstrate that the task-agnostic in-context learning capabilities of large multimodal models can be significantly enhanced by effective scaling-up. We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences with a unified autoregressive objective. Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning, such as visual prompting and object-grounded generation. The model sets a new record on multiple multimodal understanding tasks in few-shot settings. When instruction-tuned to follow specific instructions, Emu2 further achieves new state-of-the-art on challenging tasks such as question answering benchmarks for large multimodal models and open-ended subject-driven generation. These achievements demonstrate that Emu2 can serve as a base model and general-purpose interface for a wide range of multimodal tasks. Code and models are publicly available to facilitate future research.
- Abstract(参考訳): 文脈において容易にマルチモーダルタスクを解く能力(デモや簡単な指示しか持たない)は、現在のマルチモーダルシステムは模倣に苦戦している。
本研究では,大規模マルチモーダルモデルのタスク非依存型インコンテキスト学習能力が,効率的なスケールアップによって大幅に向上できることを実証する。
我々は37億のパラメータを持つ生成的マルチモーダルモデルであるEmu2を紹介する。
Emu2は、ビジュアルプロンプトやオブジェクトグラウンドドジェネレーションのような、オンザフライ推論を必要とするタスクを解決するために出現する、強いマルチモーダルなインコンテキスト学習能力を示す。
このモデルは、複数のマルチモーダル理解タスクに、数ショット設定で新しいレコードを設定する。
命令が特定の命令に従うように調整された場合、Emu2はさらに、大規模なマルチモーダルモデルの質問応答ベンチマークや、オープンな対象駆動生成といった課題に対して、新しい最先端のタスクを達成している。
これらの成果は、Emu2が幅広いマルチモーダルタスクのベースモデルおよび汎用インターフェースとして機能できることを実証している。
コードとモデルは、将来の研究を促進するために公開されている。
関連論文リスト
- S3: A Simple Strong Sample-effective Multimodal Dialog System [61.31055673156622]
本稿では,多モーダルダイアログタスクであるS3モデルに対して,概念的にシンプルだが強力なベースラインを提案する。
このシステムは、訓練済みの大規模言語モデル、画像とオーディオのための訓練済みのモダリティエンコーダ、および訓練可能なモダリティプロジェクタに基づいている。
論文 参考訳(メタデータ) (2024-06-26T12:45:43Z) - IWISDM: Assessing instruction following in multimodal models at scale [1.2320972303448239]
我々は,視覚言語タスクの無制限な配列を生成するために,指示された仮想VISual Decision Making (iWISDM)環境を紹介する。
iWISDMを用いて,様々な複雑性レベルにわたる視覚課題に追従する命令の3つの異なるベンチマークをコンパイルした。
本研究は,既存のマルチモーダルモデルと創発的マルチモーダルモデルの両方の命令順守性を評価するための頑健なベンチマークとしてiWISDMを確立した。
論文 参考訳(メタデータ) (2024-06-20T14:09:54Z) - 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities [17.374241865041856]
1つのモデルをトレーニングすることで、既存のモデルよりも少なくとも3倍多くのタスク/モダリティを解決し、パフォーマンスを損なうことなくそれを実行することが可能であることを示す。
数十のモダリティと異なるデータセットを使用して、トレーニングを30億のパラメータモデルに拡張することに成功しました。
得られたモデルとトレーニングコードは4m.epfl.chでオープンソース化されている。
論文 参考訳(メタデータ) (2024-06-13T17:59:42Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
本稿では,道路シーンに特化して設計されたMM-VUFMの系統解析について述べる。
本研究の目的は,タスク特化モデル,統合マルチモーダルモデル,統合マルチタスクモデル,基礎モデル推進技術など,共通プラクティスの包括的概要を提供することである。
我々は、クローズドループ駆動システム、解釈可能性、エンボディドドライブエージェント、世界モデルなど、重要な課題と今後のトレンドに関する洞察を提供する。
論文 参考訳(メタデータ) (2024-02-05T12:47:09Z) - Unlock the Power: Competitive Distillation for Multi-Modal Large
Language Models [17.25135606956287]
競合型マルチモーダル蒸留フレームワーク(CoMD)は,教師モデルと学生モデル間の双方向フィードバックをキャプチャする。
多様なデータセットを実験的に分析した結果,我々の知識伝達手法は学生モデルの性能を継続的に改善することがわかった。
論文 参考訳(メタデータ) (2023-11-14T14:49:46Z) - mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with
Modality Collaboration [74.31268379055201]
mPLUG-Owl2は多目的なマルチモーダル言語モデルである。
効果的にモダリティのコラボレーションを活用して、テキストとマルチモーダルの両方のパフォーマンスを改善する。
論文 参考訳(メタデータ) (2023-11-07T14:21:29Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
本稿では,これらの異なる視覚言語タスクの協調学習に驚くほど有効であるマルチモーダルタスクのためのデコーダのみのモデルを提案する。
これらの多様な目的の合同学習は単純で効果的であり、これらのタスク間でのモデルの重量共有を最大化することを示した。
我々のモデルは,画像テキストとテキスト画像検索,ビデオ質問応答,オープン語彙検出タスクにおける技術の現状を達成し,より大きく,より広範囲に訓練された基礎モデルよりも優れている。
論文 参考訳(メタデータ) (2023-03-29T16:42:30Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
ジェネリストモデルは、単一のモデル内でタスクに依存しない方法で多様なマルチモーダルタスクを実行することができる。
マルチモーダル命令と呼ばれる宣言型タスクインタフェース上に構築された汎用モデル学習システムOFASysをリリースする。
論文 参考訳(メタデータ) (2022-12-08T17:07:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。