論文の概要: Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models
- arxiv url: http://arxiv.org/abs/2312.13307v3
- Date: Wed, 25 Dec 2024 02:55:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 17:23:48.486972
- Title: Adaptive Training Meets Progressive Scaling: Elevating Efficiency in Diffusion Models
- Title(参考訳): アダプティブトレーニングとプログレッシブスケーリング - 拡散モデルにおける効率向上
- Authors: Wenhao Li, Xiu Su, Yu Han, Shan You, Tao Huang, Chang Xu,
- Abstract要約: TDCトレーニングと呼ばれる新しい2段階分割型トレーニング戦略を提案する。
タスクの類似性と難易度に基づいてタイムステップをグループ化し、高度にカスタマイズされた復調モデルを各グループに割り当て、拡散モデルの性能を向上させる。
2段階のトレーニングでは、各モデルを個別にトレーニングする必要がなくなるが、総トレーニングコストは、単一の統合されたデノナイジングモデルをトレーニングするよりもさらに低い。
- 参考スコア(独自算出の注目度): 52.1809084559048
- License:
- Abstract: Diffusion models have demonstrated remarkable efficacy in various generative tasks with the predictive prowess of denoising model. Currently, diffusion models employ a uniform denoising model across all timesteps. However, the inherent variations in data distributions at different timesteps lead to conflicts during training, constraining the potential of diffusion models. To address this challenge, we propose a novel two-stage divide-and-conquer training strategy termed TDC Training. It groups timesteps based on task similarity and difficulty, assigning highly customized denoising models to each group, thereby enhancing the performance of diffusion models. While two-stage training avoids the need to train each model separately, the total training cost is even lower than training a single unified denoising model. Additionally, we introduce Proxy-based Pruning to further customize the denoising models. This method transforms the pruning problem of diffusion models into a multi-round decision-making problem, enabling precise pruning of diffusion models. Our experiments validate the effectiveness of TDC Training, demonstrating improvements in FID of 1.5 on ImageNet64 compared to original IDDPM, while saving about 20\% of computational resources.
- Abstract(参考訳): 拡散モデルは様々な生成タスクにおいて顕著な効果を示した。
現在、拡散モデルは全ての時間ステップにわたって一様デノナイジングモデルを採用している。
しかし、異なるタイミングにおけるデータ分布の固有のバリエーションは、トレーニング中に衝突を引き起こし、拡散モデルの可能性を制限する。
この課題に対処するため,TDCトレーニングと呼ばれる新たな2段階分割型トレーニング戦略を提案する。
タスクの類似性と難易度に基づいてタイムステップをグループ化し、高度にカスタマイズされた復調モデルを各グループに割り当て、拡散モデルの性能を向上させる。
2段階のトレーニングでは、各モデルを個別にトレーニングする必要がなくなるが、総トレーニングコストは、単一の統合されたデノナイジングモデルをトレーニングするよりもさらに低い。
さらに, Proxy ベースの Pruning を導入し,デノナイジングモデルをさらにカスタマイズする。
この方法は拡散モデルのプルーニング問題を多ラウンド決定問題に変換し、拡散モデルの正確なプルーニングを可能にする。
TDCトレーニングの有効性を検証し、従来のIDDPMに比べて1.5のFIDの改善を実証し、計算資源の約20%を節約した。
関連論文リスト
- SNOOPI: Supercharged One-step Diffusion Distillation with Proper Guidance [12.973835034100428]
本稿では, SNOOPIについて述べる。SNOOPIは, トレーニングと推論の双方において, ワンステップ拡散モデルのガイダンスを高めるために設計された新しいフレームワークである。
両教師モデルの指導尺度を変化させることで、出力分布を拡大し、より堅牢なVSD損失が発生し、SBは競争性能を維持しつつ、多様なバックボーンを効果的に実行できる。
第2に、負のプロンプトを1段階拡散モデルに統合して、生成した画像中の望ましくない要素を抑圧する、負のアウェイステア注意(Negative-Away Steer Attention, NASA)と呼ばれるトレーニングフリー手法を提案する。
論文 参考訳(メタデータ) (2024-12-03T18:56:32Z) - Decouple-Then-Merge: Towards Better Training for Diffusion Models [45.89372687373466]
拡散モデルは、ノイズ破損の各ステップを反転させる一連のモデルを学ぶことで訓練される。
この研究はDeouple-then-Merge(DeMe)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-09T08:19:25Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - Adv-KD: Adversarial Knowledge Distillation for Faster Diffusion Sampling [2.91204440475204]
拡散確率モデル(DPM)は、深層生成モデルの強力なクラスとして登場した。
それらは、サンプル生成中にシーケンシャルなデノイングステップに依存している。
モデルアーキテクチャに直接位相を分解する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-31T08:19:44Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - One More Step: A Versatile Plug-and-Play Module for Rectifying Diffusion
Schedule Flaws and Enhancing Low-Frequency Controls [77.42510898755037]
One More Step (OMS) は、推論中に単純だが効果的なステップを付加したコンパクトネットワークである。
OMSは画像の忠実度を高め、トレーニングと推論の二分法を調和させ、元のモデルパラメータを保存する。
トレーニングが完了すると、同じ潜在ドメインを持つ様々な事前訓練された拡散モデルが同じOMSモジュールを共有することができる。
論文 参考訳(メタデータ) (2023-11-27T12:02:42Z) - A Recycling Training Strategy for Medical Image Segmentation with
Diffusion Denoising Models [8.649603931882227]
拡散モデルのデノイングは、画像上に条件付きセグメンテーションマスクを生成することにより、画像セグメンテーションに応用されている。
本研究では, トレーニング戦略の改善に焦点をあて, 新たなリサイクル手法を提案する。
提案手法は,同一のネットワークアーキテクチャと計算予算とを公正に比較し,非拡散型教師付きトレーニングによるリサイクルベース拡散モデルの性能向上を図っている。
論文 参考訳(メタデータ) (2023-08-30T23:03:49Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
拡散モデルは多様な画像を生成する優れた可能性を示している。
知識蒸留は、推論ステップの数を1つか数に減らすための治療法として最近提案されている。
本稿では,効率的なデータフリー蒸留アルゴリズムにより限界を克服するBOOTと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-08T20:30:55Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
そこで本研究では,分類器を含まない誘導拡散モデルから抽出し易いモデルへ抽出する手法を提案する。
画素空間上で訓練された標準拡散モデルに対して,本手法は元のモデルに匹敵する画像を生成することができる。
遅延空間で訓練された拡散モデル(例えば、安定拡散)に対して、我々の手法は1から4段階のデノナイジングステップで高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。