論文の概要: In-Context Reinforcement Learning for Variable Action Spaces
- arxiv url: http://arxiv.org/abs/2312.13327v6
- Date: Mon, 1 Jul 2024 12:29:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 15:28:10.153452
- Title: In-Context Reinforcement Learning for Variable Action Spaces
- Title(参考訳): 可変行動空間に対する文脈強化学習
- Authors: Viacheslav Sinii, Alexander Nikulin, Vladislav Kurenkov, Ilya Zisman, Sergey Kolesnikov,
- Abstract要約: Headless-ADは、可変サイズ、セマンティックコンテンツ、順序の離散的なアクション空間に一般化することができる。
我々は、ヘッドレスADは、これまでに遭遇したことのないアクション空間に一般化する重要な能力を示すことを示した。
- 参考スコア(独自算出の注目度): 46.29510499540938
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, it has been shown that transformers pre-trained on diverse datasets with multi-episode contexts can generalize to new reinforcement learning tasks in-context. A key limitation of previously proposed models is their reliance on a predefined action space size and structure. The introduction of a new action space often requires data re-collection and model re-training, which can be costly for some applications. In our work, we show that it is possible to mitigate this issue by proposing the Headless-AD model that, despite being trained only once, is capable of generalizing to discrete action spaces of variable size, semantic content and order. By experimenting with Bernoulli and contextual bandits, as well as a gridworld environment, we show that Headless-AD exhibits significant capability to generalize to action spaces it has never encountered, even outperforming specialized models trained for a specific set of actions on several environment configurations. Implementation is available at: https://github.com/corl-team/headless-ad.
- Abstract(参考訳): 近年,マルチエピソードコンテキストを持つ多種多様なデータセット上で事前学習されたトランスフォーマーが,コンテキスト内で新しい強化学習タスクに一般化できることが示されている。
以前に提案されたモデルの鍵となる制限は、事前に定義されたアクション空間のサイズと構造に依存していることである。
新しいアクションスペースを導入するには、データ再コンパイルとモデル再トレーニングが必要になることが多い。
本研究は,1回しか訓練されていないものの,可変サイズ,セマンティック内容,順序の離散的な行動空間に一般化できるヘッドレスADモデルを提案することにより,この問題を軽減することができることを示す。
Bernoulli と文脈的包帯とグリッドワールド環境を実験することにより、Headless-AD は、これまで遭遇したことのないアクション空間に一般化する重要な能力を示し、また、いくつかの環境構成において特定のアクションセットのために訓練された特別なモデルよりも優れていることを示す。
実装は、https://github.com/corl-team/headless-ad.comで公開されている。
関連論文リスト
- A Practitioner's Guide to Continual Multimodal Pretraining [83.63894495064855]
マルチモーダル・ファンデーション・モデルは視覚と言語を交わす多くのアプリケーションに役立っている。
モデルを更新し続けるために、継続事前トレーニングの研究は主に、大規模な新しいデータに対する頻度の低い、差別的な更新、あるいは頻繁に行われるサンプルレベルの更新のシナリオを探求する。
本稿では,FoMo-in-Flux(FoMo-in-Flux)について紹介する。
論文 参考訳(メタデータ) (2024-08-26T17:59:01Z) - POA: Pre-training Once for Models of All Sizes [33.72644336390202]
我々はPOA(Pre-Treating Once for All)と呼ばれる新しい三枝型自己教師型トレーニングフレームワークを提案する。
我々のアプローチは、革新的な弾性的な学生分岐を近代的な自己蒸留パラダイムに導入する。
ViT、Swin Transformer、ResNetのバックボーンを使って最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-08-02T06:13:29Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
PTMベースのCILのためのExpAndable Subspace Ensemble (EASE)を提案する。
タスク固有のサブスペースを作成することを目的として、新しいタスクごとに異なる軽量アダプタモジュールをトレーニングする。
我々のプロトタイプ補完戦略は、古いクラスのインスタンスを使わずに、古いクラスの新機能を合成します。
論文 参考訳(メタデータ) (2024-03-18T17:58:13Z) - Generalization to New Sequential Decision Making Tasks with In-Context
Learning [23.36106067650874]
少数のデモから新しいタスクを学習できる自律エージェントの訓練は、機械学習における長年の問題である。
本稿では,変換器を逐次決定問題に適用しても,新しいタスクの文脈内学習は不可能であることを示す。
我々は、異なる設計選択を調査し、より大きなモデルとデータセットサイズ、さらにタスクの多様性、環境、トラジェクトリのバーストネスが、新しいアウト・オブ・ディストリビューションタスクのコンテキスト内学習の改善をもたらすことを発見した。
論文 参考訳(メタデータ) (2023-12-06T15:19:28Z) - Building a Subspace of Policies for Scalable Continual Learning [21.03369477853538]
本稿では,一連のタスクで強化学習エージェントを訓練するためのポリシーのサブスペースを段階的に構築する新しいアプローチであるContinuous Subspace of Policies(CSP)を紹介する。
CSPは、Brax(ロコモーション)とContinuous World(操作)という2つの挑戦的なドメインから幅広いシナリオにおいて、多くの人気ベースラインを上回ります。
論文 参考訳(メタデータ) (2022-11-18T14:59:42Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - COG: Connecting New Skills to Past Experience with Offline Reinforcement
Learning [78.13740204156858]
我々は、動的プログラミングによって新しいスキルを拡張するために、事前データを再利用できることを示します。
我々は、新しいタスクを解決するために、以前のデータセットに見られるいくつかの動作をチェーンすることで、アプローチの有効性を実証する。
我々は、高次元画像観察を低レベルのロボット制御コマンドにマッピングし、エンドツーエンドでポリシーを訓練する。
論文 参考訳(メタデータ) (2020-10-27T17:57:29Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
マルチモーダル空間における条件生成のための新しい枠組みを提案する。
潜在変数を使って一般化可能な学習パターンをモデル化する。
推論では、潜伏変数は複数の出力モードに対応する最適解を見つけるために最適化される。
論文 参考訳(メタデータ) (2020-10-07T03:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。