Fourier Quantum Process Tomography
- URL: http://arxiv.org/abs/2312.13458v1
- Date: Wed, 20 Dec 2023 22:17:56 GMT
- Title: Fourier Quantum Process Tomography
- Authors: Francesco Di Colandrea, Nazanin Dehghan, Alessio D'Errico, Ebrahim
Karimi
- Abstract summary: We introduce a new technique, referred to as Fourier Quantum Process Tomography, which requires a reduced number of measurements.
We experimentally test the technique on different space-dependent polarization transformations, reporting average fidelities higher than 90%.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The characterization of a quantum device is a crucial step in the development
of quantum experiments. This is accomplished via Quantum Process Tomography,
which combines the outcomes of different projective measurements to deliver a
possible reconstruction of the underlying process. The tomography is typically
performed by processing an overcomplete set of measurements and extracting the
process matrix from maximum-likelihood estimation. Here, we introduce a new
technique, referred to as Fourier Quantum Process Tomography, which requires a
reduced number of measurements, and benchmark its performance against the
standard maximum-likelihood approach. Fourier Quantum Process Tomography is
based on measuring probability distributions in two conjugate spaces for
different state preparations and projections. Exploiting the concept of phase
retrieval, our scheme achieves a complete and robust characterization of the
setup by processing a near-minimal set of measurements. We experimentally test
the technique on different space-dependent polarization transformations,
reporting average fidelities higher than 90% and significant computational
advantage.
Related papers
- Cahier de l'Institut Pascal: Noisy Quantum Dynamics and Measurement-Induced Phase Transitions [44.99833362998488]
We provide an analysis of recent results in the context of measurement-induced phase transitions in quantum systems.
Recent results show how varying the rate of projective measurements can induce phase transitions.
We present results on the non-local effects of local measurements by examining the field theory of critical ground states in Tomonaga-Luttinger liquids.
arXiv Detail & Related papers (2024-09-10T08:10:25Z) - Cyclic measurements and simplified quantum state tomography [0.0]
We introduce the notion of cyclic tight measurements, that allow us to perform full quantum state tomography.
This type of measurements significantly simplifies the complexity of the experimental setup required to retrieve the quantum state of a physical system.
arXiv Detail & Related papers (2024-04-29T16:41:17Z) - Fast Quantum Process Tomography via Riemannian Gradient Descent [3.1406146587437904]
Constrained optimization plays a crucial role in the fields of quantum physics and quantum information science.
One specific issue is that of quantum process tomography, in which the goal is to retrieve the underlying quantum process based on a given set of measurement data.
arXiv Detail & Related papers (2024-04-29T16:28:14Z) - Quantum process tomography of structured optical gates with
convolutional neural networks [0.0]
We investigate a deep-learning approach that allows for fast and accurate reconstructions of space-dependent SU(2) operators.
We train a convolutional neural network based on a scalable U-Net architecture to process entire experimental images in parallel.
Our approach further expands the toolbox of data-driven approaches to Quantum Process Tomography and shows promise in the real-time characterization of complex optical gates.
arXiv Detail & Related papers (2024-02-26T14:47:13Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z) - Fast and robust quantum state tomography from few basis measurements [65.36803384844723]
We present an online tomography algorithm designed to optimize all the aforementioned resources at the cost of a worse dependence on accuracy.
The protocol is the first to give provably optimal performance in terms of rank and dimension for state copies, measurement settings and memory.
Further improvements are possible by executing the algorithm on a quantum computer, giving a quantum speedup for quantum state tomography.
arXiv Detail & Related papers (2020-09-17T11:28:41Z) - Experimental adaptive quantum state tomography based on rank-preserving
transformations [0.0]
Quantum tomography is a process of quantum state reconstruction using data from multiple measurements.
One of the recently proposed methods of quantum tomography is the algorithm based on rank-preserving transformations.
We present numerical and experimental comparisons of rank-preserving tomography with another adaptive method.
arXiv Detail & Related papers (2020-08-04T16:49:03Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.