Cahier de l'Institut Pascal: Noisy Quantum Dynamics and Measurement-Induced Phase Transitions
- URL: http://arxiv.org/abs/2409.06310v2
- Date: Fri, 13 Sep 2024 08:15:24 GMT
- Title: Cahier de l'Institut Pascal: Noisy Quantum Dynamics and Measurement-Induced Phase Transitions
- Authors: Alexios Christopoulos, Alessandro Santini, Guido Giachetti,
- Abstract summary: We provide an analysis of recent results in the context of measurement-induced phase transitions in quantum systems.
Recent results show how varying the rate of projective measurements can induce phase transitions.
We present results on the non-local effects of local measurements by examining the field theory of critical ground states in Tomonaga-Luttinger liquids.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This is a conference proceeding in the framework of workshop "OpenQMBP2023" at Institute Pascal (Orsay, France) and associated to the lecture given by Prof. Ehud Altman. We provide a comprehensive analysis of recent results in the context of measurement-induced phase transitions (MIPT) in quantum systems, with a particular focus on hybrid quantum circuits as a model system in one-dimension. Recent results, demonstrate how varying the rate of projective measurements can induce phase transitions, resulting in abrupt changes in the properties of the entanglement. The interplay between unitary evolution and measurement processes can be investigated, through mappings to classical statistical models and the application of replica field theory techniques. Starting from a low-entangled state, there can be three regimes characterized by different dynamics of bipartite entanglement entropies for a portion of the system: high-rate measurements leading to rapid entanglement saturation (area law), low-rate measurements allowing linear entanglement growth (up to volume law), and a critical rate at which entanglement grows logarithmically. Finally, we present results on the non-local effects of local measurements by examining the field theory of critical ground states in Tomonaga-Luttinger liquids.
Related papers
- Unraveling-induced entanglement phase transition in diffusive trajectories of continuously monitored noninteracting fermionic systems [0.0]
We show a transition from a phase with area-law entanglement to one where entanglement scales logarithmically with the system size.
Our findings may be relevant for tailoring quantum correlations in noisy quantum devices.
arXiv Detail & Related papers (2024-06-07T12:08:07Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Experimental Realization of a Measurement-Induced Entanglement Phase
Transition on a Superconducting Quantum Processor [0.0]
We report the realization of a measurement-induced entanglement transition on superconducting quantum processors with mid-circuit readout capability.
Our work paves the way for the use of mid-circuit measurement as an effective resource for quantum simulation on near-term quantum computers.
arXiv Detail & Related papers (2022-03-08T19:01:04Z) - Finite-size scalings in measurement-induced dynamical phase transition [0.0]
We study the fate of the many-body quantum Zeno transition if the system is allowed to evolve repetitively under unitary dynamics.
We use different diagnostics, such as long-time evolved entanglement entropy, purity and their fluctuations in order to characterize the transition.
arXiv Detail & Related papers (2021-07-30T14:11:22Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Generalized quantum measurements with matrix product states:
Entanglement phase transition and clusterization [58.720142291102135]
We propose a method for studying the time evolution of many-body quantum lattice systems under continuous and site-resolved measurement.
We observe a peculiar phenomenon of measurement-induced particle clusterization that takes place only for frequent moderately strong measurements, but not for strong infrequent measurements.
arXiv Detail & Related papers (2021-04-21T10:36:57Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Measurement-induced quantum criticality under continuous monitoring [0.0]
We investigate entanglement phase transitions from volume-law to area-law entanglement in a quantum many-body state under continuous position measurement.
We find the signatures of the transitions as peak structures in the mutual information as a function of measurement strength.
We propose a possible experimental setup to test the predicted entanglement transition based on the subsystem particle-number fluctuations.
arXiv Detail & Related papers (2020-04-24T19:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.