Symmetry-enforcing neural networks with applications to constitutive modeling
- URL: http://arxiv.org/abs/2312.13511v2
- Date: Wed, 14 Aug 2024 18:27:46 GMT
- Title: Symmetry-enforcing neural networks with applications to constitutive modeling
- Authors: Kévin Garanger, Julie Kraus, Julian J. Rimoli,
- Abstract summary: We show how to combine state-of-the-art micromechanical modeling and advanced machine learning techniques to homogenize complex microstructures exhibiting non-linear and history dependent behaviors.
The resulting homogenized model, termed smart law (SCL), enables the adoption of microly informed laws into finite element solvers at a fraction of the computational cost required by traditional concurrent multiscale approaches.
In this work, the capabilities of SCLs are expanded via the introduction of a novel methodology that enforces material symmetries at the neuron level.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The use of machine learning techniques to homogenize the effective behavior of arbitrary microstructures has been shown to be not only efficient but also accurate. In a recent work, we demonstrated how to combine state-of-the-art micromechanical modeling and advanced machine learning techniques to homogenize complex microstructures exhibiting non-linear and history dependent behaviors (Logarzo et al., 2021). The resulting homogenized model, termed smart constitutive law (SCL), enables the adoption of microstructurally informed constitutive laws into finite element solvers at a fraction of the computational cost required by traditional concurrent multiscale approaches. In this work, the capabilities of SCLs are expanded via the introduction of a novel methodology that enforces material symmetries at the neuron level, applicable across various neural network architectures. This approach utilizes tensor-based features in neural networks, facilitating the concise and accurate representation of symmetry-preserving operations, and is general enough to be extend to problems beyond constitutive modeling. Details on the construction of these tensor-based neural networks and their application in learning constitutive laws are presented for both elastic and inelastic materials. The superiority of this approach over traditional neural networks is demonstrated in scenarios with limited data and strong symmetries, through comprehensive testing on various materials, including isotropic neo-Hookean materials and tensegrity lattice metamaterials. This work is concluded by a discussion on the potential of this methodology to discover symmetry bases in materials and by an outline of future research directions.
Related papers
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Demolition and Reinforcement of Memories in Spin-Glass-like Neural
Networks [0.0]
The aim of this thesis is to understand the effectiveness of Unlearning in both associative memory models and generative models.
The selection of structured data enables an associative memory model to retrieve concepts as attractors of a neural dynamics with considerable basins of attraction.
A novel regularization technique for Boltzmann Machines is presented, proving to outperform previously developed methods in learning hidden probability distributions from data-sets.
arXiv Detail & Related papers (2024-03-04T23:12:42Z) - Band-gap regression with architecture-optimized message-passing neural
networks [1.9590152885845324]
We train an MPNN to first classify materials through density functional theory data from the AFLOW database as being metallic or semiconducting/insulating.
We then perform a neural-architecture search to explore the model architecture and hyper parameter space of MPNNs to predict the band gaps of the materials identified as non-metals.
The top-performing models from the search are pooled into an ensemble that significantly outperforms existing models from the literature.
arXiv Detail & Related papers (2023-09-12T16:13:10Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
We introduce a flexible framework relying on frameaveraging (SFA) to make any model E(3)-equivariant or invariant through data transformations.
We prove the validity of our method theoretically and empirically demonstrate its superior accuracy and computational scalability in materials modeling.
arXiv Detail & Related papers (2023-04-28T21:48:31Z) - Persistence-based operators in machine learning [62.997667081978825]
We introduce a class of persistence-based neural network layers.
Persistence-based layers allow the users to easily inject knowledge about symmetries respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
arXiv Detail & Related papers (2022-12-28T18:03:41Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Thermodynamics-based Artificial Neural Networks (TANN) for multiscale
modeling of materials with inelastic microstructure [0.0]
Multiscale, homogenization approaches are often used for performing reliable, accurate predictions of the macroscopic mechanical behavior of inelastic materials.
Data-driven approaches based on deep learning have risen as a promising alternative to replace ad-hoc laws and speed-up numerical methods.
Here, we propose Thermodynamics-based Artificial Neural Networks (TANN) for the modeling of mechanical materials with inelastic and complex microstructure.
arXiv Detail & Related papers (2021-08-30T11:50:38Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Hyperbolic Neural Networks++ [66.16106727715061]
We generalize the fundamental components of neural networks in a single hyperbolic geometry model, namely, the Poincar'e ball model.
Experiments show the superior parameter efficiency of our methods compared to conventional hyperbolic components, and stability and outperformance over their Euclidean counterparts.
arXiv Detail & Related papers (2020-06-15T08:23:20Z) - Geometric deep learning for computational mechanics Part I: Anisotropic
Hyperelasticity [1.8606313462183062]
This paper is the first attempt to use geometric deep learning and Sobolev training incorporate non-Euclidean microstructural data such that anisotropic hyperstructural material machine learning models can be trained in the finite deformation range.
arXiv Detail & Related papers (2020-01-08T02:07:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.