Pattern formation in charge density wave states after a quantum quench
- URL: http://arxiv.org/abs/2312.13727v1
- Date: Thu, 21 Dec 2023 10:50:26 GMT
- Title: Pattern formation in charge density wave states after a quantum quench
- Authors: Lingyu Yang, Yang Yang, Gia-Wei Chern
- Abstract summary: We study post-quench dynamics of charge-density-wave (CDW) order in the square-lattice $t$-$V$ model.
Our large-scale simulations uncover complex pattern formations in the post-quench CDW states, especially in the strong quench regime.
- Score: 5.155523246793565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study post-quench dynamics of charge-density-wave (CDW) order in the
square-lattice $t$-$V$ model. The ground state of this system at half-filling
is characterized by a checkerboard modulation of particle density. A
generalized self-consistent mean-field method, based on the time-dependent
variational principle, is employed to describe the dynamical evolution of the
CDW states. Assuming a homogeneous CDW order throughout the quench process, the
time-dependent mean-field approach is reduced to the Anderson pseudospin
method. Quench simulations based on the Bloch equation for pseudospins produce
three canonical behaviors of order-parameter dynamics: phase-locked persistent
oscillation, Landau-damped oscillation, and dynamical vanishing of the CDW
order. We further develop an efficient real-space von Neumann equation method
to incorporate dynamical inhomogeneity into simulations of quantum quenches.
Our large-scale simulations uncover complex pattern formations in the
post-quench CDW states, especially in the strong quench regime. The emergent
spatial textures are characterized by super density modulations on top of the
short-period checkerboard CDW order. Our demonstration of pattern formation in
quenched CDW states, described by a simple broken $Z_2$ symmetry, underscores
the importance of dynamical inhomogeneity in quantum quenches of many-body
systems with more complex orders.
Related papers
- Truncated Gaussian basis approach for simulating many-body dynamics [0.0]
The approach constructs an effective Hamiltonian within a reduced subspace, spanned by fermionic Gaussian states, and diagonalizes it to obtain approximate eigenstates and eigenenergies.
Symmetries can be exploited to perform parallel computation, enabling to simulate systems with much larger sizes.
For quench dynamics we observe that time-evolving wave functions in the truncated subspace facilitates the simulation of long-time dynamics.
arXiv Detail & Related papers (2024-10-05T15:47:01Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Dynamical phases of a BEC in a bad optical cavity at optomechanical resonance [0.0]
We study the emergence of dynamical phases of a Bose-Einstein condensate that is optomechanically coupled to a dissipative cavity mode.
We derive an effective model for the atomic motion, where the cavity degrees of freedom are eliminated.
We show that such limit cycle solutions are metastable configurations of the adiabatic model.
arXiv Detail & Related papers (2024-08-05T14:01:13Z) - Dynamics of a Generalized Dicke Model for Spin-1 Atoms [0.0]
The Dicke model is a staple of theoretical cavity Quantum Electrodynamics (cavity QED)
It demonstrates a rich variety of dynamics such as phase transitions, phase multistability, and chaos.
The varied and complex behaviours admitted by the model highlights the need to more rigorously map its dynamics.
arXiv Detail & Related papers (2024-03-04T04:09:35Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Linear-scale simulations of quench dynamics [2.7615495205203318]
We develop a linear-scale computational simulation technique for the non-equilibrium dynamics of quantum quench systems.
An expansion-based method allows us to efficiently compute the Loschmidt echo for infinitely large systems.
We observe wave vector-independent dynamical phase transitions in self-dual localization models.
arXiv Detail & Related papers (2023-11-16T04:18:32Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Machine learning for phase ordering dynamics of charge density waves [5.813015022439543]
We present a machine learning framework for large-scale dynamical simulations of charge density wave (CDW) states.
A neural-network model is developed to accurately and efficiently predict local electronic forces with input from neighborhood configurations.
Our work highlights the promising potential of ML-based force-field models for dynamical simulations of functional electronic materials.
arXiv Detail & Related papers (2023-03-06T21:00:56Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.