Discrete-phase-space method for driven-dissipative dynamics of strongly interacting bosons in optical lattices
- URL: http://arxiv.org/abs/2307.16170v3
- Date: Mon, 16 Dec 2024 06:44:40 GMT
- Title: Discrete-phase-space method for driven-dissipative dynamics of strongly interacting bosons in optical lattices
- Authors: Kazuma Nagao, Ippei Danshita, Seiji Yunoki,
- Abstract summary: We develop a discrete truncated Wigner method to analyze the real-time evolution of dissipative SU($cal N$) spin insulator systems.
We apply the method to a state-of-the-art experiment involving an analog quantum simulator of a three-dimensional dissipative Bose-Hubbard model.
- Score: 0.0
- License:
- Abstract: We develop a discrete truncated Wigner method to analyze the real-time evolution of dissipative SU(${\cal N}$) spin systems coupled with a Markovian environment. This semiclassical approach is not only numerically efficient but also particularly capable of accurately capturing local loss processes due to its local linearity in the dynamical equations. We apply the method to a state-of-the-art experiment involving an analog quantum simulator of a three-dimensional dissipative Bose-Hubbard model in a strongly interacting regime. Our numerical results show good agreement with experimental data, specifically capturing the continuous quantum Zeno effect in the dynamics subjected to a gradual change of the ratio between the hopping amplitude and the onsite interaction across the superfluid-Mott insulator crossover. Furthermore, we present comparative analyses with the continuous truncated Wigner method, derived as an effective Fokker-Planck equation for SU(${\cal N}$) classical spin variables, showing that the discrete method outperforms the continuous one in simulating the long-time dynamics of SU(2) and SU(3) spin models. The discrete phase space framework offers a versatile and powerful tool for exploring a wide range of open quantum many-body systems in dimensions higher than one dimension, where numerically exact methods are impractical due to the exponential growth of the Hilbert space dimension.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Two-dimensional correlation propagation dynamics with a cluster discrete phase-space method [0.0]
Nonequilibrium dynamics of highly-controlled quantum systems is a challenging issue in statistical physics.
We develop a discrete phase-space approach for general SU($N$) spin systems.
We numerically demonstrate that the cluster discrete truncated Wigner approximation can reproduce key results in a recent experiment.
arXiv Detail & Related papers (2024-04-29T11:08:44Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Hybrid discrete-continuous truncated Wigner approximation for driven,
dissipative spin systems [0.0]
We present a systematic approach for the treatment of many-body dynamics of interacting, open spin systems.
Our approach overcomes some of the shortcomings of the recently developed discrete truncated Wigner approximation (DTWA)
We show that the continuous embedding allows for a straightforward extension of the method to open spin systems subject to dephasing, losses and incoherent drive.
arXiv Detail & Related papers (2022-03-31T15:40:18Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Realistic simulations of spin squeezing and cooperative coupling effects
in large ensembles of interacting two-level systems [0.0]
We describe an efficient numerical method for simulating the dynamics of interacting spin ensembles in the presence of dephasing and decay.
This opens up the possibility to perform accurate real-scale simulations of a diverse range of experiments in quantum optics or with solid-state spin ensembles under realistic laboratory conditions.
arXiv Detail & Related papers (2021-04-30T18:00:00Z) - Phase-Space Methods for Simulating the Dissipative Many-Body Dynamics of
Collective Spin Systems [0.0]
We describe an efficient numerical method for simulating the dynamics and steady states of collective spin systems in the presence of dephasing and decay.
We benchmark this numerical technique for known superradiant decay and spin-squeezing processes and illustrate its application for the simulation of non-equilibrium phase transitions in dissipative spin lattice models.
arXiv Detail & Related papers (2020-11-19T19:00:00Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.