Exploiting Contextual Target Attributes for Target Sentiment
Classification
- URL: http://arxiv.org/abs/2312.13766v1
- Date: Thu, 21 Dec 2023 11:45:28 GMT
- Title: Exploiting Contextual Target Attributes for Target Sentiment
Classification
- Authors: Bowen Xing and Ivor W. Tsang
- Abstract summary: Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
- Score: 53.30511968323911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing PTLM-based models for TSC can be categorized into two groups: 1)
fine-tuning-based models that adopt PTLM as the context encoder; 2)
prompting-based models that transfer the classification task to the text/word
generation task. In this paper, we present a new perspective of leveraging PTLM
for TSC: simultaneously leveraging the merits of both language modeling and
explicit target-context interactions via contextual target attributes.
Specifically, we design the domain- and target-constrained cloze test, which
can leverage the PTLMs' strong language modeling ability to generate the given
target's attributes pertaining to the review context. The attributes contain
the background and property information of the target, which can help to enrich
the semantics of the review context and the target. To exploit the attributes
for tackling TSC, we first construct a heterogeneous information graph by
treating the attributes as nodes and combining them with (1) the syntax graph
automatically produced by the off-the-shelf dependency parser and (2) the
semantics graph of the review context, which is derived from the self-attention
mechanism. Then we propose a heterogeneous information gated graph
convolutional network to model the interactions among the attribute
information, the syntactic information, and the contextual information. The
experimental results on three benchmark datasets demonstrate the superiority of
our model, which achieves new state-of-the-art performance.
Related papers
- CASA: Class-Agnostic Shared Attributes in Vision-Language Models for Efficient Incremental Object Detection [30.46562066023117]
We propose a novel method utilizing attributes in vision-language foundation models for incremental object detection.
Our method constructs a Class-Agnostic Shared Attribute base (CASA) to capture common semantic information among incremental classes.
Our method adds only 0.7% to parameter storage through parameter-efficient fine-tuning to significantly enhance the scalability and adaptability of our proposed method.
arXiv Detail & Related papers (2024-10-08T08:36:12Z) - Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet Extraction (EASTE) is a novel Aspect-Based Sentiment Analysis task.
Our research aims to achieve high performance on the EASTE task and investigates the impact of model size, type, and adaptation techniques on task performance.
Ultimately, we provide detailed insights and achieving state-of-the-art results in complex sentiment analysis.
arXiv Detail & Related papers (2024-07-04T16:48:14Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - OvarNet: Towards Open-vocabulary Object Attribute Recognition [42.90477523238336]
We propose a naive two-stage approach for open-vocabulary object detection and attribute classification, termed CLIP-Attr.
The candidate objects are first proposed with an offline RPN and later classified for semantic category and attributes.
We show that recognition of semantic category and attributes is complementary for visual scene understanding.
arXiv Detail & Related papers (2023-01-23T15:59:29Z) - Compositional Generalization in Grounded Language Learning via Induced
Model Sparsity [81.38804205212425]
We consider simple language-conditioned navigation problems in a grid world environment with disentangled observations.
We design an agent that encourages sparse correlations between words in the instruction and attributes of objects, composing them together to find the goal.
Our agent maintains a high level of performance on goals containing novel combinations of properties even when learning from a handful of demonstrations.
arXiv Detail & Related papers (2022-07-06T08:46:27Z) - Graph Adaptive Semantic Transfer for Cross-domain Sentiment
Classification [68.06496970320595]
Cross-domain sentiment classification (CDSC) aims to use the transferable semantics learned from the source domain to predict the sentiment of reviews in the unlabeled target domain.
We present Graph Adaptive Semantic Transfer (GAST) model, an adaptive syntactic graph embedding method that is able to learn domain-invariant semantics from both word sequences and syntactic graphs.
arXiv Detail & Related papers (2022-05-18T07:47:01Z) - Context-LGM: Leveraging Object-Context Relation for Context-Aware Object
Recognition [48.5398871460388]
We propose a novel Contextual Latent Generative Model (Context-LGM), which considers the object-context relation and models it in a hierarchical manner.
To infer contextual features, we reformulate the objective function of Variational Auto-Encoder (VAE), where contextual features are learned as a posterior conditioned distribution on the object.
The effectiveness of our method is verified by state-of-the-art performance on two context-aware object recognition tasks.
arXiv Detail & Related papers (2021-10-08T11:31:58Z) - Target Adaptive Context Aggregation for Video Scene Graph Generation [36.669700084337045]
This paper deals with a challenging task of video scene graph generation (VidSGG)
We present a new em detect-to-track paradigm for this task by decoupling the context modeling for relation prediction from the complicated low-level entity tracking.
arXiv Detail & Related papers (2021-08-18T12:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.