Large Language Models are Miscalibrated In-Context Learners
- URL: http://arxiv.org/abs/2312.13772v3
- Date: Wed, 21 May 2025 20:54:04 GMT
- Title: Large Language Models are Miscalibrated In-Context Learners
- Authors: Chengzu Li, Han Zhou, Goran Glavaš, Anna Korhonen, Ivan Vulić,
- Abstract summary: In this work, we deliver an in-depth analysis of the behavior across different choices of learning methods.<n>We observe that the miscalibration problem exists across all learning methods in low-resource setups.<n>We find that self-ensembling with max probability produces robust and calibrated predictions.
- Score: 22.30783674111999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When adapting ICL with or without fine-tuning, we are curious about whether the instruction-tuned language model is able to achieve well-calibrated results without suffering from the problem of overconfidence (i.e., miscalibration) considering its strong instruction following ability, especially in such limited data setups. In this work, we deliver an in-depth analysis of the behavior across different choices of learning methods from the perspective of both performance and calibration. Through extensive controlled experiments, we observe that the miscalibration problem exists across all learning methods in low-resource setups. To achieve simultaneous gain for both in-task performance and calibration, we then study the potential of self-ensembling applied at different modeling stages (e.g., variations of in-context examples or variations in prompts or different ensembling strategies) to make the predictions more calibrated and have comparable or even better performance. We find that self-ensembling with max probability produces robust and calibrated predictions. Our work reveals the potential calibration problem of using ICL despite the improvements in task performance and sheds light on which learning paradigm to choose. We also provide practical guidelines for choosing learning paradigms depending on whether the data has been seen by the model before and a worthwhile solution via self-ensembling on how to enhance both task performance and calibration of LMs, which we hope could encourage further study.
Related papers
- Enhancing LLM Robustness to Perturbed Instructions: An Empirical Study [8.827173113748701]
We study character- and word-level edits of task-specific instructions, which substantially degrade downstream performance.
We find that, on average, self-denoising achieves substantially higher performance gains than alternative strategies.
arXiv Detail & Related papers (2025-04-03T16:17:56Z) - Influences on LLM Calibration: A Study of Response Agreement, Loss Functions, and Prompt Styles [4.477423478591491]
Calib-n is a novel framework that trains an auxiliary model for confidence estimation.
We find that few-shot prompts are the most effective for auxiliary model-based methods.
arXiv Detail & Related papers (2025-01-07T18:48:42Z) - What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
We find that a model's generalization behavior can be effectively characterized by a training metric we call pre-memorization train accuracy.
By connecting a model's learning behavior to its generalization, pre-memorization train accuracy can guide targeted improvements to training strategies.
arXiv Detail & Related papers (2024-11-12T09:52:40Z) - Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
We introduce a novel training data attribution method called Debias and Denoise Attribution (DDA)
Our method significantly outperforms existing approaches, achieving an averaged AUC of 91.64%.
DDA exhibits strong generality and scalability across various sources and different-scale models like LLaMA2, QWEN2, and Mistral.
arXiv Detail & Related papers (2024-10-02T07:14:26Z) - Is Difficulty Calibration All We Need? Towards More Practical Membership Inference Attacks [16.064233621959538]
We propose a query-efficient and computation-efficient MIA that directly textbfRe-levertextbfAges the original membershitextbfP scores to mtextbfItigate the errors in textbfDifficulty calibration.
arXiv Detail & Related papers (2024-08-31T11:59:42Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - A Study on the Calibration of In-context Learning [27.533223818505682]
We study in-context learning (ICL), a prevalent method for adapting static language models through tailored prompts.
We observe that, with an increasing number of ICL examples, models initially exhibit increased miscalibration before achieving better calibration.
We explore recalibration techniques and find that a scaling-binning calibrator can reduce calibration errors consistently.
arXiv Detail & Related papers (2023-12-07T03:37:39Z) - Latent Alignment with Deep Set EEG Decoders [44.128689862889715]
We introduce the Latent Alignment method that won the Benchmarks for EEG Transfer Learning competition.
We present its formulation as a deep set applied on the set of trials from a given subject.
Our experimental results show that performing statistical distribution alignment at later stages in a deep learning model is beneficial to the classification accuracy.
arXiv Detail & Related papers (2023-11-29T12:40:45Z) - On the Calibration of Large Language Models and Alignment [63.605099174744865]
Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
arXiv Detail & Related papers (2023-11-22T08:57:55Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - On Calibrating Semantic Segmentation Models: Analyses and An Algorithm [51.85289816613351]
We study the problem of semantic segmentation calibration.
Model capacity, crop size, multi-scale testing, and prediction correctness have impact on calibration.
We propose a simple, unifying, and effective approach, namely selective scaling.
arXiv Detail & Related papers (2022-12-22T22:05:16Z) - Mitigating Gradient Bias in Multi-objective Learning: A Provably Convergent Stochastic Approach [38.76462300149459]
We develop a Multi-objective Correction (MoCo) method for multi-objective gradient optimization.
The unique feature of our method is that it can guarantee convergence without increasing the non fairness gradient.
arXiv Detail & Related papers (2022-10-23T05:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.