On the Calibration of Large Language Models and Alignment
- URL: http://arxiv.org/abs/2311.13240v1
- Date: Wed, 22 Nov 2023 08:57:55 GMT
- Title: On the Calibration of Large Language Models and Alignment
- Authors: Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong Zhang, Zhendong Mao
- Abstract summary: Confidence calibration serves as a crucial tool for gauging the reliability of deep models.
We conduct a systematic examination of the calibration of aligned language models throughout the entire construction process.
Our work sheds light on whether popular LLMs are well-calibrated and how the training process influences model calibration.
- Score: 63.605099174744865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As large language models attract increasing attention and find widespread
application, concurrent challenges of reliability also arise at the same time.
Confidence calibration, an effective analysis method for gauging the
reliability of deep models, serves as a crucial tool for assessing and
improving their reliability. However, such investigation has been comparatively
underexplored. In this work, we conduct a systematic examination of the
calibration of aligned language models throughout the entire construction
process, including pretraining and alignment training. At each stage, we
investigate how different training settings, such as parameter scales and
training data, affect model calibration. To thoroughly assess model
calibration, we evaluate models on three most concerned aspects: generation,
factuality and understanding. Our work sheds light on whether popular LLMs are
well-calibrated and how the training process influences model calibration.
Related papers
- Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
Black-box large language models (LLMs) are increasingly deployed in various environments.
LLMs often exhibit overconfidence, leading to potential risks and misjudgments.
We propose a novel method, textitAtypical presentations Recalibration, which leverages atypical presentations to adjust the model's confidence estimates.
arXiv Detail & Related papers (2024-09-05T03:45:35Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z) - On Task Performance and Model Calibration with Supervised and
Self-Ensembled In-Context Learning [71.44986275228747]
In-context learning (ICL) has become an efficient approach propelled by the recent advancements in large language models (LLMs)
However, both paradigms are prone to suffer from the critical problem of overconfidence (i.e., miscalibration)
arXiv Detail & Related papers (2023-12-21T11:55:10Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Calibration in Deep Learning: A Survey of the State-of-the-Art [7.6087138685470945]
Calibrating deep neural models plays an important role in building reliable, robust AI systems in safety-critical applications.
Recent work has shown that modern neural networks that possess high predictive capability are poorly calibrated and produce unreliable model predictions.
arXiv Detail & Related papers (2023-08-02T15:28:10Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - A Close Look into the Calibration of Pre-trained Language Models [56.998539510508515]
Pre-trained language models (PLMs) may fail in giving reliable estimates of their predictive uncertainty.
We study the dynamic change in PLMs' calibration performance in training.
We extend two recently proposed learnable methods that directly collect data to train models to have reasonable confidence estimations.
arXiv Detail & Related papers (2022-10-31T21:31:07Z) - On the Importance of Calibration in Semi-supervised Learning [13.859032326378188]
State-of-the-art (SOTA) semi-supervised learning (SSL) methods have been highly successful in leveraging a mix of labeled and unlabeled data.
We introduce a family of new SSL models that optimize for calibration and demonstrate their effectiveness across standard vision benchmarks.
arXiv Detail & Related papers (2022-10-10T15:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.