Phases of Matrix Product States with Symmetric Quantum Circuits and
Symmetric Measurements with Feedforward
- URL: http://arxiv.org/abs/2312.13838v1
- Date: Thu, 21 Dec 2023 13:38:46 GMT
- Title: Phases of Matrix Product States with Symmetric Quantum Circuits and
Symmetric Measurements with Feedforward
- Authors: David Gunn, Georgios Styliaris, Tristan Kraft and Barbara Kraus
- Abstract summary: Two matrix product states (MPS) are in the same phase in the presence of symmetries.
We consider how symmetry-preserving measurements with feedforward alter the phase classification of MPS in the presence of global on-site symmetries.
- Score: 0.2010986461330016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two matrix product states (MPS) are in the same phase in the presence of
symmetries if they can be transformed into one another via symmetric
short-depth circuits. We consider how symmetry-preserving measurements with
feedforward alter the phase classification of MPS in the presence of global
on-site symmetries. We demonstrate that, for all finite abelian symmetries, any
two symmetric MPS belong to the same phase. We give an explicit protocol that
achieves a transformation between any two phases and that uses only a depth-two
symmetric circuit, two rounds of symmetric measurements, and a constant number
of auxiliary systems per site. In the case of non-abelian symmetries, symmetry
protection prevents one from deterministically transforming symmetry-protected
topological (SPT) states to product states directly via measurements, thereby
complicating the analysis. Nonetheless, we provide protocols that allow for
asymptotically deterministic transformations between the trivial phase and
certain SPT phases.
Related papers
- Measurement-induced entanglement transition in chaotic quantum Ising chain [42.87502453001109]
We study perturbations that break the integrability and/or the symmetry of the model, as well as modifications in the measurement protocol, characterizing the resulting chaos and lack of integrability through the Dissipative Spectral Form Factor (DSFF)
We show that while the measurement-induced phase transition and its properties appear broadly insensitive to lack of integrability and breaking of the $bbZ$ symmetry, a modification of the measurement basis from the transverse to the longitudinal direction makes the phase transition disappear altogether.
arXiv Detail & Related papers (2024-07-11T17:39:29Z) - Non-invertible SPT, gauging and symmetry fractionalization [2.541410020898643]
We construct the lattice models for the phases of all the symmetries in the Rep($Q_8$) duality web.
We show that these interplay can be explained using the symmetry fractionalization in the 2+1d bulk SET.
arXiv Detail & Related papers (2024-05-24T21:35:55Z) - Symmetry Protected Topological Phases of Mixed States in the Doubled Space [0.0]
We study the interplay of symmetry and topology in quantum many-body mixed states.
In a phenomenon not seen in pure states, mixed states can exhibit average symmetries.
We study the patterns of spontaneous symmetry breaking ( SSB) of mixed states.
arXiv Detail & Related papers (2024-03-20T03:40:28Z) - Symmetry restoration and quantum Mpemba effect in symmetric random circuits [3.326868738829707]
Entanglement asymmetry serves as a diagnostic tool for symmetry breaking and a proxy for thermalization.
In this Letter, we investigate symmetry restoration in various symmetric random quantum circuits.
arXiv Detail & Related papers (2024-03-13T12:20:03Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Higher-Order Cellular Automata Generated Symmetry-Protected Topological Phases and Detection Through Multi-Point Strange Correlators [21.052345471463802]
We introduce HOCA to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of matter.
We show that HOCA can generate not only well-understood SPTs with symmetries supported on either regular (e.g., line-like subsystems in the 2D cluster model) or fractal subsystems, but also a large class of unexplored SPTs with symmetries supported on more choices of subsystems.
arXiv Detail & Related papers (2023-12-31T13:56:20Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - Regularizing Towards Soft Equivariance Under Mixed Symmetries [23.603875905608565]
We present a regularizer-based method for building a model for a dataset with mixed approximate symmetries.
We show that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
arXiv Detail & Related papers (2023-06-01T05:33:41Z) - Classifying phases protected by matrix product operator symmetries using
matrix product states [0.0]
We classify the different ways in which matrix product states (MPSs) can stay invariant under the action of matrix product operator (MPO) symmetries.
This is achieved through a local characterization of how the MPSs, that generate a ground space, remain invariant under a global MPO symmetry.
arXiv Detail & Related papers (2022-03-23T17:25:30Z) - One-dimensional symmetric phases protected by frieze symmetries [0.0]
We make a systematic study of symmetry-protected topological gapped phases of quantum spin chains in the presence of the frieze space groups in one dimension using matrix product states.
We identify seventeen distinct non-trivial phases, define canonical forms, and compare the topological indices obtained from the MPS analysis with the group cohomological predictions.
arXiv Detail & Related papers (2022-02-25T18:41:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.