Non-invertible SPT, gauging and symmetry fractionalization
- URL: http://arxiv.org/abs/2405.15951v1
- Date: Fri, 24 May 2024 21:35:55 GMT
- Title: Non-invertible SPT, gauging and symmetry fractionalization
- Authors: Yabo Li, Mikhail Litvinov,
- Abstract summary: We construct the lattice models for the phases of all the symmetries in the Rep($Q_8$) duality web.
We show that these interplay can be explained using the symmetry fractionalization in the 2+1d bulk SET.
- Score: 2.541410020898643
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explicitly realize the Rep($Q_8$) non-invertible symmetry-protected topological (SPT) state as a 1+1d cluster state on a tensor product Hilbert space of qubits. Using the Kramers-Wannier operator, we construct the lattice models for the phases of all the symmetries in the Rep($Q_8$) duality web. We further show that we can construct a class of lattice models with Rep($G$) symmetry including non-invertible SPT phases if they have a dual anomalous abelian symmetry. Upon dualizing, there is a rich interplay between onsite symmetries, non-onsite symmetries, non-abelian symmetries, and non-invertible symmetries. We show that these interplay can be explained using the symmetry fractionalization in the 2+1d bulk SET.
Related papers
- (SPT-)LSM theorems from projective non-invertible symmetries [0.0]
Projective symmetries are ubiquitous in quantum lattice models and can be leveraged to constrain their phase diagram and entanglement structure.
In this paper, we investigate the consequences of projective algebras formed by non-invertible symmetries and lattice translations.
The projectivity also affects the dual symmetries after gauging $mathsfRep(G)times Z(G)$ sub-symmetries.
arXiv Detail & Related papers (2024-09-26T17:54:21Z) - Gauging modulated symmetries: Kramers-Wannier dualities and non-invertible reflections [0.0]
Modulated symmetries are internal symmetries that act in a non-uniform, spatially modulated way.
In this paper, we systematically study the gauging of finite Abelian modulated symmetries in $1+1$ dimensions.
arXiv Detail & Related papers (2024-06-18T18:00:00Z) - Non-invertible and higher-form symmetries in 2+1d lattice gauge theories [0.0]
We explore exact generalized symmetries in the standard 2+1d lattice $mathbbZ$ gauge theory coupled to the Ising model.
One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases.
We discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
arXiv Detail & Related papers (2024-05-21T18:00:00Z) - Multipartite entanglement in the diagonal symmetric subspace [41.94295877935867]
For diagonal symmetric states, we show that there is no bound entanglement for $d = 3,4 $ and $N = 3$.
We present a constructive algorithm to map multipartite diagonal symmetric states of qudits onto bipartite symmetric states of larger local dimension.
arXiv Detail & Related papers (2024-03-08T12:06:16Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Latent Space Symmetry Discovery [31.28537696897416]
We propose a novel generative model, Latent LieGAN, which can discover symmetries of nonlinear group actions.
We show that our model can express nonlinear symmetries under some conditions about the group action.
LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.
arXiv Detail & Related papers (2023-09-29T19:33:01Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - Theory of Quantum Circuits with Abelian Symmetries [0.0]
It was found that generic unitaries respecting a global symmetry cannot be realized, even approximately, using gates that respect the same symmetry.
This observation raises important open questions: What unitary transformations can be realized with k-local gates that respect a global symmetry?
In this work, we address these questions for the case of Abelian (commutative) symmetries and develop constructive methods for circuits with such symmetries.
arXiv Detail & Related papers (2023-02-24T05:47:13Z) - Entanglement-enabled symmetry-breaking orders [0.0]
A spontaneous symmetry-breaking order is conventionally described by a tensor-product wave-function of some few-body clusters.
We discuss a type of symmetry-breaking orders, dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by any tensor-product state.
arXiv Detail & Related papers (2022-07-18T18:00:00Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.