Multi-Agent Probabilistic Ensembles with Trajectory Sampling for Connected Autonomous Vehicles
- URL: http://arxiv.org/abs/2312.13910v3
- Date: Wed, 17 Jul 2024 03:10:18 GMT
- Title: Multi-Agent Probabilistic Ensembles with Trajectory Sampling for Connected Autonomous Vehicles
- Authors: Ruoqi Wen, Jiahao Huang, Rongpeng Li, Guoru Ding, Zhifeng Zhao,
- Abstract summary: We propose a decentralized Multi-Agent Probabilistic Ensembles with Trajectory Sampling MA-PETS.
In particular, in order to better capture the uncertainty of the unknown environment, MA-PETS leverages Probabilistic Ensemble neural networks.
We empirically demonstrate the superiority of MA-PETS in terms of the sample efficiency comparable to MFBL.
- Score: 12.71628954436973
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Vehicles (AVs) have attracted significant attention in recent years and Reinforcement Learning (RL) has shown remarkable performance in improving the autonomy of vehicles. In that regard, the widely adopted Model-Free RL (MFRL) promises to solve decision-making tasks in connected AVs (CAVs), contingent on the readiness of a significant amount of data samples for training. Nevertheless, it might be infeasible in practice and possibly lead to learning instability. In contrast, Model-Based RL (MBRL) manifests itself in sample-efficient learning, but the asymptotic performance of MBRL might lag behind the state-of-the-art MFRL algorithms. Furthermore, most studies for CAVs are limited to the decision-making of a single AV only, thus underscoring the performance due to the absence of communications. In this study, we try to address the decision-making problem of multiple CAVs with limited communications and propose a decentralized Multi-Agent Probabilistic Ensembles with Trajectory Sampling algorithm MA-PETS. In particular, in order to better capture the uncertainty of the unknown environment, MA-PETS leverages Probabilistic Ensemble (PE) neural networks to learn from communicated samples among neighboring CAVs. Afterwards, MA-PETS capably develops Trajectory Sampling (TS)-based model-predictive control for decision-making. On this basis, we derive the multi-agent group regret bound affected by the number of agents within the communication range and mathematically validate that incorporating effective information exchange among agents into the multi-agent learning scheme contributes to reducing the group regret bound in the worst case. Finally, we empirically demonstrate the superiority of MA-PETS in terms of the sample efficiency comparable to MFBL.
Related papers
- FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - MAIDCRL: Semi-centralized Multi-Agent Influence Dense-CNN Reinforcement
Learning [0.7366405857677227]
We present a semi-centralized Dense Reinforcement Learning algorithm enhanced by agent influence maps (AIMs) for learning effective multi-agent control on StarCraft Multi-Agent Challenge (SMAC) scenarios.
The results show that the CNN-enabled MAIDCRL significantly improved the learning performance and achieved a faster learning rate compared to the existing MAIDRL.
arXiv Detail & Related papers (2024-02-12T18:53:20Z) - Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL [57.745700271150454]
We study the sample complexity of reinforcement learning in Mean-Field Games (MFGs) with model-based function approximation.
We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity.
arXiv Detail & Related papers (2024-02-08T14:54:47Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Taming Multi-Agent Reinforcement Learning with Estimator Variance
Reduction [12.94372063457462]
Centralised training with decentralised execution (CT-DE) serves as the foundation of many leading multi-agent reinforcement learning (MARL) algorithms.
It suffers from a critical drawback due to its reliance on learning from a single sample of the joint-action at a given state.
We propose an enhancement tool that accommodates any actor-critic MARL method.
arXiv Detail & Related papers (2022-09-02T13:44:00Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Multi-Agent Adversarial Attacks for Multi-Channel Communications [24.576538640840976]
We propose a multi-agent adversary system (MAAS) for modeling and analyzing adversaries in a wireless communication scenario.
By modeling the adversaries as learning agents, we show that the proposed MAAS is able to successfully choose the transmitted channel(s) and their respective allocated power(s) without any prior knowledge of the sender strategy.
arXiv Detail & Related papers (2022-01-22T23:57:00Z) - Relative Distributed Formation and Obstacle Avoidance with Multi-agent
Reinforcement Learning [20.401609420707867]
We propose a distributed formation and obstacle avoidance method based on multi-agent reinforcement learning (MARL)
Our method achieves better performance regarding formation error, formation convergence rate and on-par success rate of obstacle avoidance compared with baselines.
arXiv Detail & Related papers (2021-11-14T13:02:45Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.