CAML: Collaborative Auxiliary Modality Learning for Multi-Agent Systems
- URL: http://arxiv.org/abs/2502.17821v1
- Date: Tue, 25 Feb 2025 03:59:40 GMT
- Title: CAML: Collaborative Auxiliary Modality Learning for Multi-Agent Systems
- Authors: Rui Liu, Yu Shen, Peng Gao, Pratap Tokekar, Ming Lin,
- Abstract summary: Collaborative Auxiliary Modality Learning ($textbfCAML$) is a novel multi-agent multi-modality framework.<n>It enables agents to collaborate and share multimodal data during training while allowing inference with reduced modalities per agent during testing.
- Score: 38.20651868834145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-modality learning has become a crucial technique for improving the performance of machine learning applications across domains such as autonomous driving, robotics, and perception systems. While existing frameworks such as Auxiliary Modality Learning (AML) effectively utilize multiple data sources during training and enable inference with reduced modalities, they primarily operate in a single-agent context. This limitation is particularly critical in dynamic environments, such as connected autonomous vehicles (CAV), where incomplete data coverage can lead to decision-making blind spots. To address these challenges, we propose Collaborative Auxiliary Modality Learning ($\textbf{CAML}$), a novel multi-agent multi-modality framework that enables agents to collaborate and share multimodal data during training while allowing inference with reduced modalities per agent during testing. We systematically analyze the effectiveness of $\textbf{CAML}$ from the perspective of uncertainty reduction and data coverage, providing theoretical insights into its advantages over AML. Experimental results in collaborative decision-making for CAV in accident-prone scenarios demonstrate that \ours~achieves up to a ${\bf 58.13}\%$ improvement in accident detection. Additionally, we validate $\textbf{CAML}$ on real-world aerial-ground robot data for collaborative semantic segmentation, achieving up to a ${\bf 10.61}\%$ improvement in mIoU.
Related papers
- Cooperative Multi-Agent Planning with Adaptive Skill Synthesis [16.228784877899976]
Multi-agent systems with reinforcement learning face challenges in sample efficiency, interpretability, and transferability.<n>We present a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making.
arXiv Detail & Related papers (2025-02-14T13:23:18Z) - PAL: Prompting Analytic Learning with Missing Modality for Multi-Modal Class-Incremental Learning [42.00851701431368]
Multi-modal class-incremental learning (MMCIL) seeks to leverage multi-modal data, such as audio-visual and image-text pairs.<n>A critical challenge remains: the issue of missing modalities during incremental learning phases.<n>We propose PAL, a novel exemplar-free framework tailored to MMCIL under missing-modality scenarios.
arXiv Detail & Related papers (2025-01-16T08:04:04Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
Cross-layer resource allocation over mobile edge computing (MEC)-aided cell-free networks can sufficiently exploit the transmitting and computing resources to promote the data rate.
Joint subcarrier allocation and beamforming optimization are investigated for the MEC-aided cell-free network from the perspective of deep learning.
arXiv Detail & Related papers (2024-12-21T10:18:55Z) - FedAuxHMTL: Federated Auxiliary Hard-Parameter Sharing Multi-Task Learning for Network Edge Traffic Classification [9.816810723612653]
This paper introduces a new framework for federated auxiliary hard- parameter sharing multi-task learning, namely, FedAuxHMTL.
It incorporates model parameter exchanges between edge server and base stations, enabling base stations from distributed areas to participate in the FedAuxHMTL process.
Empirical experiments are conducted to validate and demonstrate the FedAuxHMTL's effectiveness in terms of accuracy, total global loss, communication costs, computing time, and energy consumption.
arXiv Detail & Related papers (2024-04-11T16:23:28Z) - GeRM: A Generalist Robotic Model with Mixture-of-experts for Quadruped Robot [27.410618312830497]
In this paper, we propose GeRM (Generalist Robotic Model)
We utilize offline reinforcement learning to optimize data utilization strategies.
We employ a transformer-based VLA network to process multi-modal inputs and output actions.
arXiv Detail & Related papers (2024-03-20T07:36:43Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - RHFedMTL: Resource-Aware Hierarchical Federated Multi-Task Learning [11.329273673732217]
Federated learning is an effective way to enable AI over massive distributed nodes with security.
It is challenging to ensure the privacy while maintain a coupled multi-task learning across multiple base stations (BSs) and terminals.
In this paper, inspired by the natural cloud-BS-terminal hierarchy of cellular works, we provide a viable resource-aware hierarchical federated MTL (RHFedMTL) solution.
arXiv Detail & Related papers (2023-06-01T13:49:55Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning [102.36450942613091]
We propose an inverse reinforcement learning algorithm, called emphinverse temporal difference learning (ITD)
We show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $Psi Phi$-learning.
arXiv Detail & Related papers (2021-02-24T21:12:09Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.