論文の概要: Multi-Sentence Grounding for Long-term Instructional Video
- arxiv url: http://arxiv.org/abs/2312.14055v2
- Date: Mon, 22 Jul 2024 03:17:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 05:07:10.767756
- Title: Multi-Sentence Grounding for Long-term Instructional Video
- Title(参考訳): 長期インストラクショナルビデオのための多文グラウンドイング
- Authors: Zeqian Li, Qirui Chen, Tengda Han, Ya Zhang, Yanfeng Wang, Weidi Xie,
- Abstract要約: 大規模インストラクショナルデータセットを記述するための,自動でスケーラブルなパイプラインを確立することを目的としている。
複数の記述ステップを監督する高品質なビデオテキストデータセット、HowToStepを構築した。
- 参考スコア(独自算出の注目度): 63.27905419718045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we aim to establish an automatic, scalable pipeline for denoising the large-scale instructional dataset and construct a high-quality video-text dataset with multiple descriptive steps supervision, named HowToStep. We make the following contributions: (i) improving the quality of sentences in dataset by upgrading ASR systems to reduce errors from speech recognition and prompting a large language model to transform noisy ASR transcripts into descriptive steps; (ii) proposing a Transformer-based architecture with all texts as queries, iteratively attending to the visual features, to temporally align the generated steps to corresponding video segments. To measure the quality of our curated datasets, we train models for the task of multi-sentence grounding on it, i.e., given a long-form video, and associated multiple sentences, to determine their corresponding timestamps in the video simultaneously, as a result, the model shows superior performance on a series of multi-sentence grounding tasks, surpassing existing state-of-the-art methods by a significant margin on three public benchmarks, namely, 9.0% on HT-Step, 5.1% on HTM-Align and 1.9% on CrossTask. All codes, models, and the resulting dataset have been publicly released.
- Abstract(参考訳): 本論文では,大規模指導データセットを識別し,複数の記述ステップを監督する高品質なビデオテキストデータセットを構築するための,自動でスケーラブルなパイプラインを構築することを目的とする。
以下に貢献する。
一 音声認識による誤りを低減し、大言語モデルに雑音の多いASR文字を記述段階に変換することにより、データセットの文質を向上させること。
(II)全てのテキストを問合せとしてトランスフォーマーベースのアーキテクチャを提案し、視覚的特徴に反復的に参加し、生成されたステップを対応するビデオセグメントに時間的にアライメントする。
その結果,HT-Stepでは9.0%,HTM-Alignでは5.1%,CrossTaskでは1.9%,HTM-Alignでは1.9%,HTM-Stepでは9.0%,既存手法では9.0%,CrossTaskでは1.9%であった。
すべてのコード、モデル、結果のデータセットが公開されている。
関連論文リスト
- Visatronic: A Multimodal Decoder-Only Model for Speech Synthesis [13.702423348269155]
本稿では,VTTSのビデオから音声を生成するタスクを提案し,マルチモーダル音声生成のための新しい手法を提案する。
本稿では,このタスクをビザトロニクスと呼ぶデコーダのみのマルチモーダルモデルを提案する。
視覚、テキスト、音声を直接トランスフォーマーモデルの共通部分空間に埋め込み、自己回帰的損失を用いて、話者ビデオや音声の書き起こしに条件付けられた離散化メル-スペクトログラムの生成モデルを学ぶ。
論文 参考訳(メタデータ) (2024-11-26T18:57:29Z) - xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1(xGen-SynVideo-1)は、テキスト記述からリアルなシーンを生成することができるテキスト・ツー・ビデオ(T2V)生成モデルである。
VidVAEはビデオデータを空間的にも時間的にも圧縮し、視覚トークンの長さを大幅に削減する。
DiTモデルは、空間的および時間的自己アテンション層を取り入れ、異なる時間枠とアスペクト比をまたいだ堅牢な一般化を可能にする。
論文 参考訳(メタデータ) (2024-08-22T17:55:22Z) - Auto-ACD: A Large-scale Dataset for Audio-Language Representation Learning [50.28566759231076]
高品質なキャプションを持つ音声データセットを構築するための,革新的で自動的なアプローチを提案する。
具体的には、150万以上のオーディオテキストペアからなる、大規模で高品質なオーディオ言語データセットをAuto-ACDとして構築する。
我々はLLMを用いて,抽出したマルチモーダルな手がかりによって導かれる,各音声の連接キャプションを言い換える。
論文 参考訳(メタデータ) (2023-09-20T17:59:32Z) - Learning to Ground Instructional Articles in Videos through Narrations [50.3463147014498]
ナレーションされたハウツービデオにおける手続き的活動の段階をローカライズするためのアプローチを提案する。
本稿では,教科記事を含む言語知識ベース(wikiHow)からステップ記述を抽出する。
本モデルは,3つのモダリティをマッチングすることにより,プロシージャ記事のステップをハウツービデオに時間的に基礎付けることを学習する。
論文 参考訳(メタデータ) (2023-06-06T15:45:53Z) - Hierarchical3D Adapters for Long Video-to-text Summarization [79.01926022762093]
マルチモーダル情報は、メモリ重大で完全に微調整されたテキスト要約方法よりも優れたパフォーマンスを提供する。
実験により, マルチモーダル情報は, よりメモリ量が多く, 完全に微調整されたテキスト要約法よりも優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2022-10-10T16:44:36Z) - Advancing High-Resolution Video-Language Representation with Large-Scale
Video Transcriptions [31.4943447481144]
本稿では,共同学習と言語学習(VL)について検討し,モダリティ間の学習を可能とし,多くの下流作業に役立てる。
本モデルでは,10の理解タスクと2の新たなテキスト・ビジュアル生成タスクを実現する。
論文 参考訳(メタデータ) (2021-11-19T17:36:01Z) - Automatic Curation of Large-Scale Datasets for Audio-Visual
Representation Learning [62.47593143542552]
本稿では,自動データセットキュレーションのためのサブセット最適化手法について述べる。
本研究では,高視聴覚対応の映像を抽出し,自己監視モデルが自動的に構築されているにもかかわらず,既存のスケールのビデオデータセットと類似したダウンストリームパフォーマンスを達成できることを実証した。
論文 参考訳(メタデータ) (2021-01-26T14:27:47Z) - Multiresolution and Multimodal Speech Recognition with Transformers [22.995102995029576]
本稿ではトランスフォーマーアーキテクチャを用いた音声視覚自動音声認識(AV-ASR)システムを提案する。
我々は、視覚情報によって提供されるシーンコンテキストに着目して、ASRを接地する。
私たちの結果は、最先端のListen、Attend、Spellベースのアーキテクチャに匹敵します。
論文 参考訳(メタデータ) (2020-04-29T09:32:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。