論文の概要: LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR
Understanding
- arxiv url: http://arxiv.org/abs/2312.14074v1
- Date: Thu, 21 Dec 2023 17:52:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 13:57:41.970670
- Title: LiDAR-LLM: Exploring the Potential of Large Language Models for 3D LiDAR
Understanding
- Title(参考訳): LiDAR-LLM:3次元LiDAR理解のための大規模言語モデルの可能性を探る
- Authors: Senqiao Yang, Jiaming Liu, Ray Zhang, Mingjie Pan, Zoey Guo, Xiaoqi
Li, Zehui Chen, Peng Gao, Yandong Guo and Shanghang Zhang
- Abstract要約: LLM(Large Language Models)とMLLM(Multimodal Large Language Models)は、命令追従および2次元画像理解において有望であることを示す。
本稿では,LiDARデータを入力として取り込んだLiDAR-LLMについて述べる。
我々のLiDAR-LLMの中心的な洞察は、言語モデリング問題としての3次元屋外シーン認識の再構築である。
- 参考スコア(独自算出の注目度): 36.66305190056456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Large Language Models (LLMs) and Multimodal Large Language Models
(MLLMs) have shown promise in instruction following and 2D image understanding.
While these models are powerful, they have not yet been developed to comprehend
the more challenging 3D physical scenes, especially when it comes to the sparse
outdoor LiDAR data. In this paper, we introduce LiDAR-LLM, which takes raw
LiDAR data as input and harnesses the remarkable reasoning capabilities of LLMs
to gain a comprehensive understanding of outdoor 3D scenes. The central insight
of our LiDAR-LLM is the reformulation of 3D outdoor scene cognition as a
language modeling problem, encompassing tasks such as 3D captioning, 3D
grounding, 3D question answering, etc. Specifically, due to the scarcity of 3D
LiDAR-text pairing data, we introduce a three-stage training strategy and
generate relevant datasets, progressively aligning the 3D modality with the
language embedding space of LLM. Furthermore, we design a View-Aware
Transformer (VAT) to connect the 3D encoder with the LLM, which effectively
bridges the modality gap and enhances the LLM's spatial orientation
comprehension of visual features. Our experiments show that LiDAR-LLM possesses
favorable capabilities to comprehend various instructions regarding 3D scenes
and engage in complex spatial reasoning. LiDAR-LLM attains a 40.9 BLEU-1 on the
3D captioning task and achieves a 63.1\% classification accuracy and a 14.3\%
BEV mIoU on the 3D grounding task. Web page:
https://sites.google.com/view/lidar-llm
- Abstract(参考訳): 近年,Large Language Models (LLMs) とMultimodal Large Language Models (MLLMs) は,命令追従と2次元画像理解において有望であることを示す。
これらのモデルは強力だが、特に狭い屋外のLiDARデータに関して、より困難な3D物理シーンを理解するためにはまだ開発されていない。
本稿では、LiDARデータを入力として取り出し、LLMの顕著な推論能力を利用して屋外3Dシーンの総合的な理解を得るLiDAR-LLMを提案する。
LiDAR-LLMは,3次元キャプション,3次元グラウンド,3次元質問応答などのタスクを包含する言語モデリング問題として,3次元屋外シーン認識の再構築を主眼としている。
具体的には、3次元LiDARテキストペアリングデータの不足により、3段階のトレーニング戦略を導入し、関連するデータセットを生成し、3次元モダリティをLLMの言語埋め込み空間と漸進的に整合させる。
さらに、3DエンコーダとLLMを接続するビュー・アウェア・トランスフォーマー(VAT)を設計し、モダリティギャップを効果的にブリッジし、LLMの視覚的特徴の空間的方向理解を強化する。
実験の結果,LiDAR-LLMは3次元シーンに関する様々な指示を理解でき,複雑な空間的推論を行うことができることがわかった。
LiDAR-LLMは3Dキャプションタスクで40.9 BLEU-1を獲得し、63.1\%の分類精度と3Dグラウンドタスクで14.3\%のBEV mIoUを達成する。
Webページ: https://sites.google.com/view/lidar-llm
関連論文リスト
- VP-LLM: Text-Driven 3D Volume Completion with Large Language Models through Patchification [56.211321810408194]
大規模言語モデル(LLM)はマルチモーダル理解および生成タスクにおいて大きな可能性を示している。
本稿では,LLMを利用して条件付き3D補完を行うVolume Patch LLM(VP-LLM)を提案する。
以上の結果から,LLMが複雑なテキスト命令を解釈し,3Dオブジェクトを理解する能力は,最先端の拡散に基づく3Dコンプリートモデルに勝るものであることが示唆された。
論文 参考訳(メタデータ) (2024-06-08T18:17:09Z) - Grounded 3D-LLM with Referent Tokens [58.890058568493096]
そこで我々は,Grounded 3D-LLMを提案する。
このモデルは、3Dシーンを参照するために特別な名詞句としてシーン参照トークンを使用する。
3D視覚タスクをタスク固有の命令テンプレートを使用して言語形式に変換する自然なアプローチを提供する。
論文 参考訳(メタデータ) (2024-05-16T18:03:41Z) - When LLMs step into the 3D World: A Survey and Meta-Analysis of 3D Tasks via Multi-modal Large Language Models [113.18524940863841]
本調査では,大規模言語モデルによる3Dデータの処理,理解,生成を可能にする方法論の概要について概説する。
我々の研究は、点雲からニューラル放射場(NeRF)まで、様々な3次元データ表現にまたがっている。
3Dシーン理解、キャプション、質問応答、対話などのタスクにおいて、LLMとの統合を検討する。
論文 参考訳(メタデータ) (2024-05-16T16:59:58Z) - Language-Image Models with 3D Understanding [59.499585515469974]
LV3Dと呼ばれる2Dおよび3Dのための大規模事前学習データセットを開発した。
次に,新しいMLLMであるCube-LLMを導入し,LV3Dで事前学習する。
純粋なデータスケーリングは、3D特有のアーキテクチャ設計やトレーニング目的を使わずに、強力な3D知覚能力を実現することを示す。
論文 参考訳(メタデータ) (2024-05-06T17:57:27Z) - Unified Scene Representation and Reconstruction for 3D Large Language Models [40.693839066536505]
既存のアプローチは、基底真理(GT)幾何または補助モデルによって再構成された3次元シーンから点雲を抽出する。
凍結した2次元基礎モデルを用いて、Uni3DR2の3次元幾何学的および意味的認識表現特徴を抽出する。
我々の学習した3D表現は、再構築プロセスに貢献するだけでなく、LLMにとって貴重な知識も提供します。
論文 参考訳(メタデータ) (2024-04-19T17:58:04Z) - 3DMIT: 3D Multi-modal Instruction Tuning for Scene Understanding [12.823274886850697]
我々は3DMITという新しい高速なプロンプトチューニングパラダイムを導入する。
このパラダイムは、3Dシーンと言語間のアライメントステージを排除し、命令プロンプトを3Dモダリティ情報で拡張する。
本研究では,3次元シーン領域における多様なタスクにまたがる手法の有効性を評価する。
論文 参考訳(メタデータ) (2024-01-06T12:20:18Z) - Chat-3D: Data-efficiently Tuning Large Language Model for Universal
Dialogue of 3D Scenes [56.727745047799246]
3Dシーンの理解は幅広い用途で注目されている。
本稿では,事前学習した3次元表現の3次元視覚的知覚能力と,高度なLCMの印象的な推論と会話能力を組み合わせたChat-3Dを提案する。
論文 参考訳(メタデータ) (2023-08-17T03:52:15Z) - 3D-LLM: Injecting the 3D World into Large Language Models [60.43823088804661]
大規模言語モデル (LLM) と視覚言語モデル (VLM) は、常識推論のような複数のタスクで優れていることが証明されている。
本稿では,大規模言語モデルに3Dワールドを注入し,新しい3D-LLMのファミリーを導入することを提案する。
具体的には、3D-LLMは3Dポイントクラウドとその機能を入力として取り込んで、さまざまな3D関連タスクを実行することができる。
論文 参考訳(メタデータ) (2023-07-24T17:59:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。