Optimizing Heat Alert Issuance with Reinforcement Learning
- URL: http://arxiv.org/abs/2312.14196v4
- Date: Thu, 19 Dec 2024 20:22:04 GMT
- Title: Optimizing Heat Alert Issuance with Reinforcement Learning
- Authors: Ellen M. Considine, Rachel C. Nethery, Gregory A. Wellenius, Francesca Dominici, Mauricio Tec,
- Abstract summary: Key strategy in societal adaptation to climate change is using alert systems to prompt preventative action and reduce the adverse health impacts of extreme heat events.<n>This paper implements and evaluates reinforcement learning as a tool to optimize the effectiveness of such systems.<n>First, we introduce a new publicly available RL environment enabling the evaluation of the effectiveness of heat alert policies to reduce heat-related hospitalizations.<n>Second, we use this environment to evaluate standard RL algorithms in the context of heat alert issuance.<n>Third, a post-hoc contrastive analysis provides insight into scenarios where our modified heat alert-RL policies yield significant gains/losses over the current
- Score: 2.7262923206583136
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A key strategy in societal adaptation to climate change is using alert systems to prompt preventative action and reduce the adverse health impacts of extreme heat events. This paper implements and evaluates reinforcement learning (RL) as a tool to optimize the effectiveness of such systems. Our contributions are threefold. First, we introduce a new publicly available RL environment enabling the evaluation of the effectiveness of heat alert policies to reduce heat-related hospitalizations. The rewards model is trained from a comprehensive dataset of historical weather, Medicare health records, and socioeconomic/geographic features. We use scalable Bayesian techniques tailored to the low-signal effects and spatial heterogeneity present in the data. The transition model uses real historical weather patterns enriched by a data augmentation mechanism based on climate region similarity. Second, we use this environment to evaluate standard RL algorithms in the context of heat alert issuance. Our analysis shows that policy constraints are needed to improve RL's initially poor performance. Third, a post-hoc contrastive analysis provides insight into scenarios where our modified heat alert-RL policies yield significant gains/losses over the current National Weather Service alert policy in the United States.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - RAIN: Reinforcement Algorithms for Improving Numerical Weather and Climate Models [0.0]
Current climate models rely on complex mathematical parameterisations to represent sub-grid scale processes.
This study explores integrating reinforcement learning with idealised climate models to address key parameterisation challenges.
arXiv Detail & Related papers (2024-08-28T20:10:46Z) - Go Beyond Black-box Policies: Rethinking the Design of Learning Agent
for Interpretable and Verifiable HVAC Control [3.326392645107372]
We overcome the bottleneck by redesigning HVAC controllers using decision trees extracted from thermal dynamics models and historical data.
Our method saves 68.4% more energy and increases human comfort gain by 14.8% compared to the state-of-the-art method.
arXiv Detail & Related papers (2024-02-29T22:42:23Z) - Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering [3.2114754609864695]
Heat, Ventilation and Air Conditioning systems cost approximately 40% of primary energy usage in the building sector.
For large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem.
New data-driven room temperature prediction model is proposed based on the k-means clustering method.
arXiv Detail & Related papers (2024-02-21T09:04:45Z) - Location Agnostic Source-Free Domain Adaptive Learning to Predict Solar
Power Generation [0.0]
This paper proposes a domain adaptive deep learning-based framework to estimate solar power generation using weather features.
A feed-forward deep convolutional network model is trained for a known location dataset in a supervised manner and utilized to predict the solar power of an unknown location later.
Our method has shown an improvement of $10.47 %$, $7.44 %$, $5.11%$ in solar power prediction accuracy compared to best performing non-adaptive method for California (CA), Florida (FL) and New York (NY), respectively.
arXiv Detail & Related papers (2024-01-24T02:08:48Z) - WARM: On the Benefits of Weight Averaged Reward Models [63.08179139233774]
We propose Weight Averaged Reward Models (WARM) to mitigate reward hacking.
Experiments on summarization tasks, using best-of-N and RL methods, shows that WARM improves the overall quality and alignment of LLM predictions.
arXiv Detail & Related papers (2024-01-22T18:27:08Z) - Comparing Data-Driven and Mechanistic Models for Predicting Phenology in
Deciduous Broadleaf Forests [47.285748922842444]
We train a deep neural network to predict a phenological index from meteorological time series.
We find that this approach outperforms traditional process-based models.
arXiv Detail & Related papers (2024-01-08T15:29:23Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves.
Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments.
Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs.
We employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales.
arXiv Detail & Related papers (2023-10-09T13:07:23Z) - Improving extreme weather events detection with light-weight neural
networks [0.0]
We modify a light-weight Context Guided convolutional neural network architecture trained for semantic segmentation of tropical cyclones and atmospheric rivers in climate data.
Our primary focus is on tropical cyclones, the most destructive weather events, for which current models show limited performance.
arXiv Detail & Related papers (2023-03-31T23:38:54Z) - Value-Consistent Representation Learning for Data-Efficient
Reinforcement Learning [105.70602423944148]
We propose a novel method, called value-consistent representation learning (VCR), to learn representations that are directly related to decision-making.
Instead of aligning this imagined state with a real state returned by the environment, VCR applies a $Q$-value head on both states and obtains two distributions of action values.
It has been demonstrated that our methods achieve new state-of-the-art performance for search-free RL algorithms.
arXiv Detail & Related papers (2022-06-25T03:02:25Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - A Transfer Learning approach to Heatmap Regression for Action Unit
intensity estimation [50.261472059743845]
Action Units (AUs) are geometrically-based atomic facial muscle movements.
We propose a novel AU modelling problem that consists of jointly estimating their localisation and intensity.
A Heatmap models whether an AU occurs or not at a given spatial location.
arXiv Detail & Related papers (2020-04-14T16:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.