Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering
- URL: http://arxiv.org/abs/2402.13628v1
- Date: Wed, 21 Feb 2024 09:04:45 GMT
- Title: Improving Building Temperature Forecasting: A Data-driven Approach with
System Scenario Clustering
- Authors: Dafang Zhao, Zheng Chen, Zhengmao Li, Xiaolei Yuan, Ittetsu Taniguchi
- Abstract summary: Heat, Ventilation and Air Conditioning systems cost approximately 40% of primary energy usage in the building sector.
For large-scale HVAC system management, it is difficult to construct a detailed model for each subsystem.
New data-driven room temperature prediction model is proposed based on the k-means clustering method.
- Score: 3.2114754609864695
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Heat, Ventilation and Air Conditioning (HVAC) systems play a critical role in
maintaining a comfortable thermal environment and cost approximately 40% of
primary energy usage in the building sector. For smart energy management in
buildings, usage patterns and their resulting profiles allow the improvement of
control systems with prediction capabilities. However, for large-scale HVAC
system management, it is difficult to construct a detailed model for each
subsystem. In this paper, a new data-driven room temperature prediction model
is proposed based on the k-means clustering method. The proposed data-driven
temperature prediction approach extracts the system operation feature through
historical data analysis and further simplifies the system-level model to
improve generalization and computational efficiency. We evaluate the proposed
approach in the real world. The results demonstrated that our approach can
significantly reduce modeling time without reducing prediction accuracy.
Related papers
- Weather Prediction Using CNN-LSTM for Time Series Analysis: A Case Study on Delhi Temperature Data [0.0]
This study explores a hybrid CNN-LSTM model to enhance temperature forecasting accuracy for the Delhi region.
We employed both direct and indirect methods, including comprehensive data preprocessing and exploratory analysis, to construct and train our model.
Experimental results indicate that the CNN-LSTM model significantly outperforms traditional forecasting methods in terms of both accuracy and stability.
arXiv Detail & Related papers (2024-09-14T11:06:07Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Data-driven HVAC Control Using Symbolic Regression: Design and
Implementation [0.0]
This study proposes a design and implementation methodology of data-driven heating, ventilation, and air conditioning () control.
Building thermodynamics is modeled using a symbolic regression model (SRM) built from the collected data.
The proposed framework reduces the peak power by 16.1% compared to the widely used thermostat controller.
arXiv Detail & Related papers (2023-04-06T13:57:50Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - Reservoir Computing as a Tool for Climate Predictability Studies [0.0]
We show that Reservoir Computing provides an alternative nonlinear approach that improves on the predictive skill of the Linear-Inverse-Modeling approach.
The improved predictive skill of the RC approach over a wide range of conditions suggests that this machine-learning technique may have a use in climate predictability studies.
arXiv Detail & Related papers (2021-02-24T22:22:59Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - A latent variable approach to heat load prediction in thermal grids [10.973034520723957]
The method is applied to a single multi-dwelling building in Lulea, Sweden.
Results are compared with predictions using an artificial neural network.
arXiv Detail & Related papers (2020-02-13T09:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.