Social Recommendation through Heterogeneous Graph Modeling of the Long-term and Short-term Preference Defined by Dynamic Time Spans
- URL: http://arxiv.org/abs/2312.14306v2
- Date: Wed, 11 Dec 2024 14:36:10 GMT
- Title: Social Recommendation through Heterogeneous Graph Modeling of the Long-term and Short-term Preference Defined by Dynamic Time Spans
- Authors: Behafarid Mohammad Jafari, Xiao Luo, Ali Jafari,
- Abstract summary: This research presents a novel method that provides social recommendations by incorporating the dynamic property of social network data in a heterogeneous graph.
The model is applied to real-world data to argue its superior performance.
- Score: 4.7775609825906376
- License:
- Abstract: Social recommendations have been widely adopted in substantial domains. Recently, graph neural networks (GNN) have been employed in recommender systems due to their success in graph representation learning. However, dealing with the dynamic property of social network data is a challenge. This research presents a novel method that provides social recommendations by incorporating the dynamic property of social network data in a heterogeneous graph. The model aims to capture user preference over time without going through the complexities of a dynamic graph by adding period nodes to define users' long-term and short-term preferences and aggregating assigned edge weights. The model is applied to real-world data to argue its superior performance. Promising results demonstrate the effectiveness of this model.
Related papers
- LLM-Based Multi-Agent Systems are Scalable Graph Generative Models [73.28294528654885]
GraphAgent-Generator (GAG) is a novel simulation-based framework for dynamic, text-attributed social graph generation.
GAG simulates the temporal node and edge generation processes for zero-shot social graph generation.
The resulting graphs exhibit adherence to seven key macroscopic network properties, achieving an 11% improvement in microscopic graph structure metrics.
arXiv Detail & Related papers (2024-10-13T12:57:08Z) - TempoKGAT: A Novel Graph Attention Network Approach for Temporal Graph Analysis [3.5707423185282656]
This paper presents a new type of graph attention network, called TempoKGAT, which combines time-decaying weight and a selective neighbor aggregation mechanism on the spatial domain.
We evaluate our approach on multiple datasets from the traffic, energy, and health sectors involvingtemporal data.
arXiv Detail & Related papers (2024-08-29T09:54:46Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation [15.977789295203976]
We propose a novel framework called Self-Supervised Graph Neural Network (SelfGNN) for sequential recommendation.
The SelfGNN framework encodes short-term graphs based on time intervals and utilizes Graph Neural Networks (GNNs) to learn short-term collaborative relationships.
Our personalized self-augmented learning structure enhances model robustness by mitigating noise in short-term graphs based on long-term user interests and personal stability.
arXiv Detail & Related papers (2024-05-31T14:53:12Z) - Deep learning for dynamic graphs: models and benchmarks [16.851689741256912]
Recent progress in research on Deep Graph Networks (DGNs) has led to a maturation of the domain of learning on graphs.
Despite the growth of this research field, there are still important challenges that are yet unsolved.
arXiv Detail & Related papers (2023-07-12T12:02:36Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Scaling Up Dynamic Graph Representation Learning via Spiking Neural
Networks [23.01100055999135]
We present a scalable framework, namely SpikeNet, to efficiently capture the temporal and structural patterns of temporal graphs.
As a low-power alternative to RNNs, SNNs explicitly model graph dynamics as spike trains of neuron populations.
SpikeNet generalizes to a large temporal graph with significantly fewer parameters and computation overheads.
arXiv Detail & Related papers (2022-08-15T09:22:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - UBER-GNN: A User-Based Embeddings Recommendation based on Graph Neural
Networks [27.485553372163732]
We propose User-Based Embeddings Recommendation with Graph Neural Network, UBER-GNN for brevity.
UBER-GNN takes advantage of structured data to generate longterm user preferences, and transfers session sequences into graphs to generate graph-based dynamic interests.
Experiments conducted on real Ping An scenario show that UBER-GNN outperforms the state-of-the-art session-based recommendation methods.
arXiv Detail & Related papers (2020-08-06T09:54:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.