論文の概要: Generative Models for Simulation of KamLAND-Zen
- arxiv url: http://arxiv.org/abs/2312.14372v1
- Date: Fri, 22 Dec 2023 01:47:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 16:24:05.099022
- Title: Generative Models for Simulation of KamLAND-Zen
- Title(参考訳): KamLAND-Zenシミュレーションのための生成モデル
- Authors: Z. Fu, C. Grant, D. M. Krawiec, A. Li, L. Winslow
- Abstract要約: ニュートリノのない二重ベータ崩壊(0nubetabeta)の探索はニュートリノの性質に関する深い疑問に答える。
発見を主張するには、0nubetabetaを模倣する検出器イベントの正確かつ効率的なシミュレーションが重要である。
伝統的なモンテカルロシミュレーションは機械学習に基づく生成モデルによって補うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The next generation of searches for neutrinoless double beta decay
(0{\nu}\b{eta}\b{eta}) are poised to answer deep questions on the nature of
neutrinos and the source of the Universe's matter-antimatter asymmetry. They
will be looking for event rates of less than one event per ton of instrumented
isotope per year. To claim discovery, accurate and efficient simulations of
detector events that mimic 0{\nu}\b{eta}\b{eta} is critical. Traditional Monte
Carlo (MC) simulations can be supplemented by machine-learning-based generative
models. In this work, we describe the performance of generative models designed
for monolithic liquid scintillator detectors like KamLAND to produce highly
accurate simulation data without a predefined physics model. We demonstrate its
ability to recover low-level features and perform interpolation. In the future,
the results of these generative models can be used to improve event
classification and background rejection by providing high-quality abundant
generated data.
- Abstract(参考訳): ニュートリノのない二重ベータ崩壊(0{\nu}\b{eta}\b{eta})の次の世代の探索は、ニュートリノの性質と宇宙の物質-反物質非対称性の源についての深い疑問に答えるものである。
年1トンの同位体が1トン当たり1件未満の事象率を観測する。
発見を主張するには、0{\nu}\b{eta}\b{eta}を模倣する検出器事象の正確かつ効率的なシミュレーションが重要である。
伝統的なモンテカルロシミュレーションは機械学習に基づく生成モデルによって補うことができる。
本研究では,KamLANDのようなモノリシック液体シンチレータ検出器向けに設計された生成モデルの性能について述べる。
低レベルの機能を復元し、補間を行う能力を示す。
将来、これらの生成モデルの結果は、高品質な豊富な生成データを提供することで、イベントの分類と背景拒絶を改善するのに使うことができる。
関連論文リスト
- A Comprehensive Evaluation of Generative Models in Calorimeter Shower Simulation [0.0]
ファストシミュレーション」は計算ボトルネックを克服する上で重要な役割を担っている。
深部生成モデルの使用により、検出器シミュレーションのための代理モデルへの関心が高まった。
評価の結果,CaloDiffusionおよびCaloScore生成モデルが最も正確な粒子シャワーシミュレーションを行った。
論文 参考訳(メタデータ) (2024-06-08T11:17:28Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Heat Death of Generative Models in Closed-Loop Learning [63.83608300361159]
本研究では、独自の学習データセットに加えて、生成したコンテンツをフィードバックする生成モデルの学習ダイナミクスについて検討する。
各イテレーションで十分な量の外部データが導入されない限り、非自明な温度がモデルを退化させることを示す。
論文 参考訳(メタデータ) (2024-04-02T21:51:39Z) - Deep Generative Models for Ultra-High Granularity Particle Physics Detector Simulation: A Voyage From Emulation to Extrapolation [0.0]
この論文は、ベルIIの実験でPixel Vertex Detector (PXD)のこの課題を克服することを目的としている。
本研究は、粒子物理学における超高粒度検出器シミュレーションに深部生成モデルを用いた結果について初めて紹介する。
論文 参考訳(メタデータ) (2024-03-05T23:12:47Z) - Deep Generative Models for Detector Signature Simulation: A Taxonomic Review [0.0]
粒子物理学検出器からの信号は衝突の物理を符号化する低レベル物体(エネルギー沈降や軌道など)である。
検出器におけるそれらの完全なシミュレーションは、計算と記憶集約的なタスクである。
我々は,検出器シグネチャのシミュレーションについて,既存の文献の包括的かつ徹底的な分類学的レビューを行う。
論文 参考訳(メタデータ) (2023-12-15T08:27:39Z) - Scalable Diffusion for Materials Generation [99.71001883652211]
我々は任意の結晶構造(ユニマット)を表現できる統一された結晶表現を開発する。
UniMatはより大型で複雑な化学系から高忠実度結晶構造を生成することができる。
材料の生成モデルを評価するための追加指標を提案する。
論文 参考訳(メタデータ) (2023-10-18T15:49:39Z) - Continual learning autoencoder training for a particle-in-cell
simulation via streaming [52.77024349608834]
今後のエクサスケール時代は 次世代の物理シミュレーションを 高解像度で提供します
これらのシミュレーションは高解像度であり、ディスク上に大量のシミュレーションデータを格納することはほぼ不可能であるため、機械学習モデルのトレーニングに影響を与える。
この研究は、ディスク上のデータなしで、実行中のシミュレーションにニューラルネットワークを同時にトレーニングするアプローチを示す。
論文 参考訳(メタデータ) (2022-11-09T09:55:14Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Towards Reliable Neural Generative Modeling of Detectors [0.45671221781968335]
本稿では,LHCb実験イベントのシミュレーションにおけるGAN(Generative Adversarial Network)の適用について論じる。
結果は、LHCbチェレンコフ検出器のGeant4シミュレーションに基づいている。
論文 参考訳(メタデータ) (2022-04-21T08:14:24Z) - Optimising hadronic collider simulations using amplitude neural networks [0.0]
我々はNJet C++ライブラリから1ループ振幅でニューラルネットワークモデルをトレーニングし、Sherpa Monte Carloイベントジェネレータとインターフェースする。
その結果,分布の一致は良好であり,シミュレーション時間も30倍に短縮された。
論文 参考訳(メタデータ) (2022-02-09T15:08:30Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
本研究の目的は、代替燃料の物理的特性を予測するためのクロージャ方程式として機能する、安価で計算可能な機械学習モデルを構築することである。
これらのモデルは、MDシミュレーションのデータベースや、データ融合-忠実性アプローチによる実験的な測定を用いて訓練することができる。
その結果,MLモデルでは,広範囲の圧力および温度条件の燃料特性を正確に予測できることがわかった。
論文 参考訳(メタデータ) (2021-10-18T14:43:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。