論文の概要: Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation
- arxiv url: http://arxiv.org/abs/2312.14387v1
- Date: Fri, 22 Dec 2023 02:31:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-25 16:27:12.146028
- Title: Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation
- Title(参考訳): 対話型画像セグメンテーションのための可変非感性および目標保存マスク微細化
- Authors: Chaowei Fang, Ziyin Zhou, Junye Chen, Hanjing Su, Qingyao Wu, Guanbin
Li
- Abstract要約: ポイントベースのインタラクティブなイメージセグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減することができる。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
- 参考スコア(独自算出の注目度): 68.16510297109872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point-based interactive image segmentation can ease the burden of mask
annotation in applications such as semantic segmentation and image editing.
However, fully extracting the target mask with limited user inputs remains
challenging. We introduce a novel method, Variance-Insensitive and
Target-Preserving Mask Refinement to enhance segmentation quality with fewer
user inputs. Regarding the last segmentation result as the initial mask, an
iterative refinement process is commonly employed to continually enhance the
initial mask. Nevertheless, conventional techniques suffer from sensitivity to
the variance in the initial mask. To circumvent this problem, our proposed
method incorporates a mask matching algorithm for ensuring consistent
inferences from different types of initial masks. We also introduce a
target-aware zooming algorithm to preserve object information during
downsampling, balancing efficiency and accuracy. Experiments on GrabCut,
Berkeley, SBD, and DAVIS datasets demonstrate our method's state-of-the-art
performance in interactive image segmentation.
- Abstract(参考訳): ポイントベースのインタラクティブな画像セグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減できる。
しかし,ユーザ入力を限定したターゲットマスクの完全抽出は依然として困難である。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
初期マスクとしての最後のセグメンテーション結果については、初期マスクを継続的に強化する反復精錬工程が一般的である。
それにもかかわらず、従来の手法は初期マスクのばらつきに敏感である。
この問題を回避するため,提案手法では,異なる種類の初期マスクからの一貫した推論を保証するマスクマッチングアルゴリズムを組み込んだ。
また,ターゲット認識型ズームアルゴリズムを導入し,ダウンサンプリング時のオブジェクト情報保存,効率のバランス,正確性について述べる。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
関連論文リスト
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - On Mask-based Image Set Desensitization with Recognition Support [46.51027529020668]
マスクを用いた画像デセンシタイズ手法を提案する。
我々は,認識タスクの重要な情報を維持するために,解釈アルゴリズムを利用する。
また,マスク画像に基づく性能向上のためのモデル調整手法として,特徴選択マスクネットを提案する。
論文 参考訳(メタデータ) (2023-12-14T14:26:42Z) - Completing Visual Objects via Bridging Generation and Segmentation [84.4552458720467]
MaskCompは、生成とセグメンテーションの反復的な段階を通して完了プロセスを記述する。
各イテレーションにおいて、オブジェクトマスクは、画像生成を促進する追加条件として提供される。
我々は,1世代と1つのセグメンテーション段階の組み合わせがマスマスデノイザーとして効果的に機能することを実証した。
論文 参考訳(メタデータ) (2023-10-01T22:25:40Z) - Mask2Anomaly: Mask Transformer for Universal Open-set Segmentation [29.43462426812185]
本稿では,画素単位の分類からマスク分類へのシフトによるパラダイム変化を提案する。
マスクをベースとしたMask2Anomalyは,マスク分類アーキテクチャの統合の可能性を示した。
総合的質的・質的評価により, Mask2Anomaly は新たな最先端結果が得られることを示す。
論文 参考訳(メタデータ) (2023-09-08T20:07:18Z) - Unmasking Anomalies in Road-Scene Segmentation [18.253109627901566]
異常セグメンテーションはアプリケーションを駆動するための重要なタスクである。
本稿では,画素単位の分類からマスク分類へのシフトによるパラダイム変化を提案する。
Mask2Anomalyはマスク分類アーキテクチャに異常検出手法を統合する可能性を示した。
論文 参考訳(メタデータ) (2023-07-25T08:23:10Z) - Few-shot semantic segmentation via mask aggregation [5.886986014593717]
セマンティックセグメンテーションは、ラベル付きデータが少ない新しいクラスを認識することを目的としている。
従来の研究では、これをピクセル単位の分類問題と見なしていた。
この問題に対処するためのマスクベースの分類手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T07:13:09Z) - Open-Vocabulary Instance Segmentation via Robust Cross-Modal
Pseudo-Labeling [61.03262873980619]
Open-vocabularyのインスタンスセグメンテーションは、マスクアノテーションなしで新しいクラスをセグメンテーションすることを目的としている。
本研究では,字幕内の単語の意味を画像中のオブジェクトマスクの視覚的特徴と整合させることで,擬似マスクの訓練を行うクロスモーダルな擬似ラベルフレームワークを提案する。
我々のフレームワークは、生徒の自己学習のための単語意味論を通じて、キャプションに新しいクラスをラベル付けすることができる。
論文 参考訳(メタデータ) (2021-11-24T18:50:47Z) - Per-Pixel Classification is Not All You Need for Semantic Segmentation [184.2905747595058]
マスク分類はセマンティックレベルのセグメンテーションタスクとインスタンスレベルのセグメンテーションタスクの両方を解くのに十分一般的である。
マスクの集合を予測する単純なマスク分類モデルであるMaskFormerを提案する。
提案手法は,現在の最先端セマンティック(ADE20Kでは55.6 mIoU)とパノプティックセグメンテーション(COCOでは52.7 PQ)モデルの両方に優れる。
論文 参考訳(メタデータ) (2021-07-13T17:59:50Z) - Proposal-Free Volumetric Instance Segmentation from Latent
Single-Instance Masks [16.217524435617744]
この研究は、新しいプロポーザルフリーなインスタンスセグメンテーション手法を導入している。
画像全体で予測されるシングルインスタンスセグメンテーションマスクをスライディングウィンドウスタイルで構築する。
関連するアプローチとは対照的に,本手法では,各画素毎に1つのマスクを同時に予測し,画像全体のコンフリクトを解消する。
論文 参考訳(メタデータ) (2020-09-10T17:09:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。