A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait
Recognition
- URL: http://arxiv.org/abs/2312.14410v1
- Date: Fri, 22 Dec 2023 03:25:15 GMT
- Title: A Multi-Stage Adaptive Feature Fusion Neural Network for Multimodal Gait
Recognition
- Authors: Shinan Zou and Jianbo Xiong and Chao Fan and Shiqi Yu and Jin Tang
- Abstract summary: Most existing gait recognition algorithms are unimodal, and a few multimodal gait recognition algorithms perform multimodal fusion only once.
We propose a multi-stage feature fusion strategy (MSFFS), which performs multimodal fusions at different stages in the feature extraction process.
Also, we propose an adaptive feature fusion module (AFFM) that considers the semantic association between silhouettes and skeletons.
- Score: 15.080096318551346
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gait recognition is a biometric technology that has received extensive
attention. Most existing gait recognition algorithms are unimodal, and a few
multimodal gait recognition algorithms perform multimodal fusion only once.
None of these algorithms may fully exploit the complementary advantages of the
multiple modalities. In this paper, by considering the temporal and spatial
characteristics of gait data, we propose a multi-stage feature fusion strategy
(MSFFS), which performs multimodal fusions at different stages in the feature
extraction process. Also, we propose an adaptive feature fusion module (AFFM)
that considers the semantic association between silhouettes and skeletons. The
fusion process fuses different silhouette areas with their more related
skeleton joints. Since visual appearance changes and time passage co-occur in a
gait period, we propose a multiscale spatial-temporal feature extractor
(MSSTFE) to learn the spatial-temporal linkage features thoroughly.
Specifically, MSSTFE extracts and aggregates spatial-temporal linkages
information at different spatial scales. Combining the strategy and modules
mentioned above, we propose a multi-stage adaptive feature fusion (MSAFF)
neural network, which shows state-of-the-art performance in many experiments on
three datasets. Besides, MSAFF is equipped with feature dimensional pooling (FD
Pooling), which can significantly reduce the dimension of the gait
representations without hindering the accuracy.
https://github.com/ShinanZou/MSAFF
Related papers
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
Few-shot 3D point cloud segmentation (FS-PCS) aims at generalizing models to segment novel categories with minimal support samples.
We introduce a cost-free multimodal FS-PCS setup, utilizing textual labels and the potentially available 2D image modality.
We propose a simple yet effective Test-time Adaptive Cross-modal Seg (TACC) technique to mitigate training bias.
arXiv Detail & Related papers (2024-10-29T19:28:41Z) - Masked Graph Learning with Recurrent Alignment for Multimodal Emotion Recognition in Conversation [12.455034591553506]
Multimodal Emotion Recognition in Conversation (MERC) can be applied to public opinion monitoring, intelligent dialogue robots, and other fields.
Previous work ignored the inter-modal alignment process and the intra-modal noise information before multimodal fusion.
We have developed a novel approach called Masked Graph Learning with Recursive Alignment (MGLRA) to tackle this problem.
arXiv Detail & Related papers (2024-07-23T02:23:51Z) - Fusion-Mamba for Cross-modality Object Detection [63.56296480951342]
Cross-modality fusing information from different modalities effectively improves object detection performance.
We design a Fusion-Mamba block (FMB) to map cross-modal features into a hidden state space for interaction.
Our proposed approach outperforms the state-of-the-art methods on $m$AP with 5.9% on $M3FD$ and 4.9% on FLIR-Aligned datasets.
arXiv Detail & Related papers (2024-04-14T05:28:46Z) - Mutual-Guided Dynamic Network for Image Fusion [51.615598671899335]
We propose a novel mutual-guided dynamic network (MGDN) for image fusion, which allows for effective information utilization across different locations and inputs.
Experimental results on five benchmark datasets demonstrate that our proposed method outperforms existing methods on four image fusion tasks.
arXiv Detail & Related papers (2023-08-24T03:50:37Z) - Learning multi-domain feature relation for visible and Long-wave
Infrared image patch matching [39.88037892637296]
We present the largest visible and Long-wave Infrared (LWIR) image patch matching dataset, termed VL-CMIM.
In addition, a multi-domain feature relation learning network (MD-FRN) is proposed.
arXiv Detail & Related papers (2023-08-09T11:23:32Z) - Exploring Multi-Timestep Multi-Stage Diffusion Features for Hyperspectral Image Classification [16.724299091453844]
Diffusion-based HSI classification methods only utilize manually selected single-timestep single-stage features.
We propose a novel diffusion-based feature learning framework that explores Multi-Timestep Multi-Stage Diffusion features for HSI classification for the first time, called MTMSD.
Our method outperforms state-of-the-art methods for HSI classification, especially on the challenging Houston 2018 dataset.
arXiv Detail & Related papers (2023-06-15T08:56:58Z) - Interactive Multi-scale Fusion of 2D and 3D Features for Multi-object
Tracking [23.130490413184596]
We introduce PointNet++ to obtain multi-scale deep representations of point cloud to make it adaptive to our proposed Interactive Feature Fusion.
Our method can achieve good performance on the KITTI benchmark and outperform other approaches without using multi-scale feature fusion.
arXiv Detail & Related papers (2022-03-30T13:00:27Z) - Learning Deep Multimodal Feature Representation with Asymmetric
Multi-layer Fusion [63.72912507445662]
We propose a compact and effective framework to fuse multimodal features at multiple layers in a single network.
We verify that multimodal features can be learnt within a shared single network by merely maintaining modality-specific batch normalization layers in the encoder.
Secondly, we propose a bidirectional multi-layer fusion scheme, where multimodal features can be exploited progressively.
arXiv Detail & Related papers (2021-08-11T03:42:13Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - Multidomain Multimodal Fusion For Human Action Recognition Using
Inertial Sensors [1.52292571922932]
We propose a novel multidomain multimodal fusion framework that extracts complementary and distinct features from different domains of the input modality.
Features in different domains are extracted by Convolutional Neural networks (CNNs) and then fused by Canonical Correlation based Fusion (CCF) for improving the accuracy of human action recognition.
arXiv Detail & Related papers (2020-08-22T03:46:12Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.