A Review on Searchable Encryption Functionality and the Evaluation of Homomorphic Encryption
- URL: http://arxiv.org/abs/2312.14434v1
- Date: Fri, 22 Dec 2023 04:48:00 GMT
- Title: A Review on Searchable Encryption Functionality and the Evaluation of Homomorphic Encryption
- Authors: Brian Kishiyama, Izzat Alsmadi,
- Abstract summary: Businesses, such as Netflix and PayPal, rely on the Cloud for data storage, computing power, and other services.
There are security and privacy concerns regarding the Cloud.
To protect data in the Cloud, it should be encrypted before it is uploaded.
This paper reviews the functionality of Searchable Encryption, mostly related to Cloud services, in the years 2019 to 2023.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cloud Service Providers, such as Google Cloud Platform, Microsoft Azure, or Amazon Web Services, offer continuously evolving cloud services. It is a growing industry. Businesses, such as Netflix and PayPal, rely on the Cloud for data storage, computing power, and other services. For businesses, the cloud reduces costs, provides flexibility, and allows for growth. However, there are security and privacy concerns regarding the Cloud. Because Cloud services are accessed through the internet, hackers and attackers could possibly access the servers from anywhere. To protect data in the Cloud, it should be encrypted before it is uploaded, it should be protected in storage and also in transit. On the other hand, data owners may need to access their encrypted data. It may also need to be altered, updated, deleted, read, searched, or shared with others. If data is decrypted in the Cloud, sensitive data is exposed and could be exposed and misused. One solution is to leave the data in its encrypted form and use Searchable Encryption (SE) which operates on encrypted data. The functionality of SE has improved since its inception and research continues to explore ways to improve SE. This paper reviews the functionality of Searchable Encryption, mostly related to Cloud services, in the years 2019 to 2023, and evaluates one of its schemes, Fully Homomorphic Encryption. Overall, it seems that research is at the point where SE efficiency is increased as multiple functionalities are aggregated and tested.
Related papers
- CCA-Secure Key-Aggregate Proxy Re-Encryption for Secure Cloud Storage [1.4610685586329806]
Data protection in cloud storage is the key to the survival of the cloud industry.
Proxy Re-Encryption schemes enable users to convert their ciphertext into others ciphertext by using a re-encryption key.
Recently, we lowered the key storage cost of C-PREs to constant size and proposed the first Key-Aggregate Proxy Re-Encryption scheme.
arXiv Detail & Related papers (2024-10-10T17:02:49Z) - K-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data [0.0]
In public cloud environments while data is encrypted, the cloud service provider typically controls the encryption keys.
This situation makes traditional privacy-preserving classification systems inadequate.
We propose a secure k nearest neighbor classification algorithm for encrypted, outsourced data.
arXiv Detail & Related papers (2024-07-05T19:44:17Z) - Understanding crypter-as-a-service in a popular underground marketplace [51.328567400947435]
Crypters are pieces of software whose main goal is to transform a target binary so it can avoid detection from Anti Viruses (AVs) applications.
The crypter-as-a-service model has gained popularity, in response to the increased sophistication of detection mechanisms.
This paper provides the first study on an online underground market dedicated to crypter-as-a-service.
arXiv Detail & Related papers (2024-05-20T08:35:39Z) - Cloud Security and Security Challenges Revisited [0.0]
We revisit attacks on Cloud services and Cloud-related attack vectors that have been published in recent years.
Based on these findings, we apply a security metric in order to rank all these Cloud-related security challenges concerning their severity.
arXiv Detail & Related papers (2024-05-18T17:42:02Z) - Enc2DB: A Hybrid and Adaptive Encrypted Query Processing Framework [47.11111145443189]
We introduce Enc2DB, a novel secure database system following a hybrid strategy on and openGauss.
We present a micro-benchmarking test and self-adaptive mode switch strategy that can choose the best execution path (cryptography or TEE) to answer a given query.
We also design and implement a ciphertext index compatible with native cost model and querys to accelerate query processing.
arXiv Detail & Related papers (2024-04-10T08:11:12Z) - Ciphertext-Only Attack on a Secure $k$-NN Computation on Cloud [0.0]
encryption can prevent unauthorized access, data breaches, and the resultant financial loss, reputation damage, and legal issues.
Sanyashi et al. proposed an encryption scheme to facilitate privacy-preserving $k$-NN computation on the cloud.
We give an efficient algorithm and empirically demonstrate that their encryption scheme is vulnerable to the ciphertext-only attack (COA)
arXiv Detail & Related papers (2024-03-14T03:53:01Z) - Protecting Sensitive Tabular Data in Hybrid Clouds [0.0]
Regulated industries, such as Healthcare and Finance, are starting to move parts of their data and workloads to the public cloud.
We address the security and performance challenges of big data analytics using a hybrid cloud in a real-life use case from a hospital.
arXiv Detail & Related papers (2023-12-03T11:20:24Z) - Exploring Security Practices in Infrastructure as Code: An Empirical
Study [54.669404064111795]
Cloud computing has become popular thanks to the widespread use of Infrastructure as Code (IaC) tools.
scripting process does not automatically prevent practitioners from introducing misconfigurations, vulnerabilities, or privacy risks.
Ensuring security relies on practitioners understanding and the adoption of explicit policies, guidelines, or best practices.
arXiv Detail & Related papers (2023-08-07T23:43:32Z) - THE-X: Privacy-Preserving Transformer Inference with Homomorphic
Encryption [112.02441503951297]
Privacy-preserving inference of transformer models is on the demand of cloud service users.
We introduce $textitTHE-X$, an approximation approach for transformers, which enables privacy-preserving inference of pre-trained models.
arXiv Detail & Related papers (2022-06-01T03:49:18Z) - Reinforcement Learning on Encrypted Data [58.39270571778521]
We present a preliminary, experimental study of how a DQN agent trained on encrypted states performs in environments with discrete and continuous state spaces.
Our results highlight that the agent is still capable of learning in small state spaces even in presence of non-deterministic encryption, but performance collapses in more complex environments.
arXiv Detail & Related papers (2021-09-16T21:59:37Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.