PUMA: Efficient Continual Graph Learning for Node Classification with Graph Condensation
- URL: http://arxiv.org/abs/2312.14439v2
- Date: Wed, 10 Jul 2024 00:37:02 GMT
- Title: PUMA: Efficient Continual Graph Learning for Node Classification with Graph Condensation
- Authors: Yilun Liu, Ruihong Qiu, Yanran Tang, Hongzhi Yin, Zi Huang,
- Abstract summary: Existing graph representation learning models encounter a catastrophic problem when learning with newly incoming graphs.
In this paper, we propose a PUdo-label guided Memory bAnkrogation (PUMA) framework to enhance its efficiency and effectiveness.
- Score: 49.00940417190911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When handling streaming graphs, existing graph representation learning models encounter a catastrophic forgetting problem, where previously learned knowledge of these models is easily overwritten when learning with newly incoming graphs. In response, Continual Graph Learning (CGL) emerges as a novel paradigm enabling graph representation learning from streaming graphs. Our prior work, Condense and Train (CaT) is a replay-based CGL framework with a balanced continual learning procedure, which designs a small yet effective memory bankn for replaying. Although the CaT alleviates the catastrophic forgetting problem, there exist three issues: (1) The graph condensation only focuses on labelled nodes while neglecting abundant information carried by unlabelled nodes; (2) The continual training scheme of the CaT overemphasises on the previously learned knowledge, limiting the model capacity to learn from newly added memories; (3) Both the condensation process and replaying process of the CaT are time-consuming. In this paper, we propose a PsUdo-label guided Memory bAnk (PUMA) CGL framework, extending from the CaT to enhance its efficiency and effectiveness by overcoming the above-mentioned weaknesses and limits. To fully exploit the information in a graph, PUMA expands the coverage of nodes during graph condensation with both labelled and unlabelled nodes. Furthermore, a training-from-scratch strategy is proposed to upgrade the previous continual learning scheme for a balanced training between the historical and the new graphs. Besides, PUMA uses a one-time prorogation and wide graph encoders to accelerate the graph condensation and the graph encoding process in the training stage to improve the efficiency of the whole framework. Extensive experiments on six datasets for the node classification task demonstrate the state-of-the-art performance and efficiency over existing methods.
Related papers
- GraphCLIP: Enhancing Transferability in Graph Foundation Models for Text-Attributed Graphs [27.169892145194638]
GraphCLIP is a framework to learn graph foundation models with strong cross-domain zero/few-shot transferability.
We generate and curate large-scale graph-summary pair data with the assistance of LLMs.
For few-shot learning, we propose a novel graph prompt tuning technique aligned with our pretraining objective.
arXiv Detail & Related papers (2024-10-14T09:40:52Z) - Do We Really Need Graph Convolution During Training? Light Post-Training Graph-ODE for Efficient Recommendation [34.93725892725111]
Graph convolution networks (GCNs) in training recommender systems (RecSys) have been persistent concerns.
This paper presents a critical examination of the necessity of graph convolutions during the training phase.
We introduce an innovative alternative: the Light Post-Training Graph Ordinary-Differential-Equation (LightGODE)
arXiv Detail & Related papers (2024-07-26T17:59:32Z) - Simple Graph Condensation [30.85754566420301]
Graph condensation involves tuning Graph Neural Networks (GNNs) on a small condensed graph for use on a large-scale original graph.
We introduce the Simple Graph Condensation (SimGC) framework, which aligns the condensed graph with the original graph from the input layer to the prediction layer.
SimGC achieves a significant speedup of up to 10 times compared to existing graph condensation methods.
arXiv Detail & Related papers (2024-03-22T05:04:48Z) - Two Trades is not Baffled: Condensing Graph via Crafting Rational Gradient Matching [50.30124426442228]
Training on large-scale graphs has achieved remarkable results in graph representation learning, but its cost and storage have raised growing concerns.
We propose a novel graph method named textbfCraftextbfTing textbfRationatextbf (textbfCTRL) which offers an optimized starting point closer to the original dataset's feature distribution.
arXiv Detail & Related papers (2024-02-07T14:49:10Z) - A Topology-aware Graph Coarsening Framework for Continual Graph Learning [8.136809136959302]
Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion.
Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs.
We propose TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework.
arXiv Detail & Related papers (2024-01-05T22:22:13Z) - CaT: Balanced Continual Graph Learning with Graph Condensation [29.7368211701716]
Continual graph learning (CGL) is purposed to continuously update a graph model with graph data being fed in a streaming manner.
Recent replay-based methods intend to solve this problem by updating the model using both the entire new-coming data and a memory bank that stores replayed graphs.
To solve these issues, a Condense and Train framework is proposed in this paper.
arXiv Detail & Related papers (2023-09-18T03:28:49Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
Existing graph condensation methods rely on the joint optimization of nodes and structures in the condensed graph.
We advocate a new Structure-Free Graph Condensation paradigm, named SFGC, to distill a large-scale graph into a small-scale graph node set.
arXiv Detail & Related papers (2023-06-05T07:53:52Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
Training of Relation Graph Convolutional Networks (R-GCN) does not scale well with the size of the graph.
In this work, we experiment with the use of graph summarization techniques to compress the graph.
We obtain reasonable results on the AIFB, MUTAG and AM datasets.
arXiv Detail & Related papers (2022-03-05T00:28:43Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Graph Ordering: Towards the Optimal by Learning [69.72656588714155]
Graph representation learning has achieved a remarkable success in many graph-based applications, such as node classification, prediction, and community detection.
However, for some kind of graph applications, such as graph compression and edge partition, it is very hard to reduce them to some graph representation learning tasks.
In this paper, we propose to attack the graph ordering problem behind such applications by a novel learning approach.
arXiv Detail & Related papers (2020-01-18T09:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.