A Topology-aware Graph Coarsening Framework for Continual Graph Learning
- URL: http://arxiv.org/abs/2401.03077v1
- Date: Fri, 5 Jan 2024 22:22:13 GMT
- Title: A Topology-aware Graph Coarsening Framework for Continual Graph Learning
- Authors: Xiaoxue Han, Zhuo Feng, Yue Ning
- Abstract summary: Continual learning on graphs tackles the problem of training a graph neural network (GNN) where graph data arrive in a streaming fashion.
Traditional continual learning strategies such as Experience Replay can be adapted to streaming graphs.
We propose TA$mathbbCO$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual learning framework.
- Score: 8.136809136959302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning on graphs tackles the problem of training a graph neural
network (GNN) where graph data arrive in a streaming fashion and the model
tends to forget knowledge from previous tasks when updating with new data.
Traditional continual learning strategies such as Experience Replay can be
adapted to streaming graphs, however, these methods often face challenges such
as inefficiency in preserving graph topology and incapability of capturing the
correlation between old and new tasks. To address these challenges, we propose
TA$\mathbb{CO}$, a (t)opology-(a)ware graph (co)arsening and (co)ntinual
learning framework that stores information from previous tasks as a reduced
graph. At each time period, this reduced graph expands by combining with a new
graph and aligning shared nodes, and then it undergoes a "zoom out" process by
reduction to maintain a stable size. We design a graph coarsening algorithm
based on node representation proximities to efficiently reduce a graph and
preserve topological information. We empirically demonstrate the learning
process on the reduced graph can approximate that of the original graph. Our
experiments validate the effectiveness of the proposed framework on three
real-world datasets using different backbone GNN models.
Related papers
- PUMA: Efficient Continual Graph Learning for Node Classification with Graph Condensation [49.00940417190911]
Existing graph representation learning models encounter a catastrophic problem when learning with newly incoming graphs.
In this paper, we propose a PUdo-label guided Memory bAnkrogation (PUMA) framework to enhance its efficiency and effectiveness.
arXiv Detail & Related papers (2023-12-22T05:09:58Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Scaling R-GCN Training with Graph Summarization [71.06855946732296]
Training of Relation Graph Convolutional Networks (R-GCN) does not scale well with the size of the graph.
In this work, we experiment with the use of graph summarization techniques to compress the graph.
We obtain reasonable results on the AIFB, MUTAG and AM datasets.
arXiv Detail & Related papers (2022-03-05T00:28:43Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
Graph embedding is a way to transform and encode the data structure in high dimensional and non-Euclidean feature space.
CensNet is a general graph embedding framework, which embeds both nodes and edges to a latent feature space.
Our approach achieves or matches the state-of-the-art performance in four graph learning tasks.
arXiv Detail & Related papers (2020-10-25T22:39:31Z) - Lifelong Graph Learning [6.282881904019272]
We bridge graph learning and lifelong learning by converting a continual graph learning problem to a regular graph learning problem.
We show that feature graph networks (FGN) achieve superior performance in two applications, i.e., lifelong human action recognition with wearable devices and feature matching.
arXiv Detail & Related papers (2020-09-01T18:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.