Automatic Data Retrieval for Cross Lingual Summarization
- URL: http://arxiv.org/abs/2312.14542v1
- Date: Fri, 22 Dec 2023 09:13:24 GMT
- Title: Automatic Data Retrieval for Cross Lingual Summarization
- Authors: Nikhilesh Bhatnagar, Ashok Urlana, Vandan Mujadia, Pruthwik Mishra,
Dipti Misra Sharma
- Abstract summary: Cross-lingual summarization involves the summarization of text written in one language to a different one.
In this work, we aim to perform cross-lingual summarization from English to Hindi.
- Score: 4.759360739268894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cross-lingual summarization involves the summarization of text written in one
language to a different one. There is a body of research addressing
cross-lingual summarization from English to other European languages. In this
work, we aim to perform cross-lingual summarization from English to Hindi. We
propose pairing up the coverage of newsworthy events in textual and video
format can prove to be helpful for data acquisition for cross lingual
summarization. We analyze the data and propose methods to match articles to
video descriptions that serve as document and summary pairs. We also outline
filtering methods over reasonable thresholds to ensure the correctness of the
summaries. Further, we make available 28,583 mono and cross-lingual
article-summary pairs https://github.com/tingc9/Cross-Sum-News-Aligned. We also
build and analyze multiple baselines on the collected data and report error
analysis.
Related papers
- Cross-lingual Contextualized Phrase Retrieval [63.80154430930898]
We propose a new task formulation of dense retrieval, cross-lingual contextualized phrase retrieval.
We train our Cross-lingual Contextualized Phrase Retriever (CCPR) using contrastive learning.
On the phrase retrieval task, CCPR surpasses baselines by a significant margin, achieving a top-1 accuracy that is at least 13 points higher.
arXiv Detail & Related papers (2024-03-25T14:46:51Z) - X-PARADE: Cross-Lingual Textual Entailment and Information Divergence across Paragraphs [55.80189506270598]
X-PARADE is the first cross-lingual dataset of paragraph-level information divergences.
Annotators label a paragraph in a target language at the span level and evaluate it with respect to a corresponding paragraph in a source language.
Aligned paragraphs are sourced from Wikipedia pages in different languages.
arXiv Detail & Related papers (2023-09-16T04:34:55Z) - $\mu$PLAN: Summarizing using a Content Plan as Cross-Lingual Bridge [72.64847925450368]
Cross-lingual summarization consists of generating a summary in one language given an input document in a different language.
This work presents $mu$PLAN, an approach to cross-lingual summarization that uses an intermediate planning step as a cross-lingual bridge.
arXiv Detail & Related papers (2023-05-23T16:25:21Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - Models and Datasets for Cross-Lingual Summarisation [78.56238251185214]
We present a cross-lingual summarisation corpus with long documents in a source language associated with multi-sentence summaries in a target language.
The corpus covers twelve language pairs and directions for four European languages, namely Czech, English, French and German.
We derive cross-lingual document-summary instances from Wikipedia by combining lead paragraphs and articles' bodies from language aligned Wikipedia titles.
arXiv Detail & Related papers (2022-02-19T11:55:40Z) - CrossSum: Beyond English-Centric Cross-Lingual Summarization for 1,500+
Language Pairs [27.574815708395203]
CrossSum is a large-scale cross-lingual summarization dataset comprising 1.68 million article-summary samples in 1,500+ language pairs.
We create CrossSum by aligning parallel articles written in different languages via cross-lingual retrieval from a multilingual abstractive summarization dataset.
We propose a multistage data sampling algorithm to effectively train a cross-lingual summarization model capable of summarizing an article in any target language.
arXiv Detail & Related papers (2021-12-16T11:40:36Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - WikiLingua: A New Benchmark Dataset for Cross-Lingual Abstractive
Summarization [41.578594261746055]
We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of crosslingual abstractive summarization systems.
We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors.
We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article.
arXiv Detail & Related papers (2020-10-07T00:28:05Z) - A Deep Reinforced Model for Zero-Shot Cross-Lingual Summarization with
Bilingual Semantic Similarity Rewards [40.17497211507507]
Cross-lingual text summarization is a practically important but under-explored task.
We propose an end-to-end cross-lingual text summarization model.
arXiv Detail & Related papers (2020-06-27T21:51:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.