Dipole coupling of a bilayer graphene quantum dot to a high-impedance
microwave resonator
- URL: http://arxiv.org/abs/2312.14629v2
- Date: Mon, 29 Jan 2024 11:30:02 GMT
- Title: Dipole coupling of a bilayer graphene quantum dot to a high-impedance
microwave resonator
- Authors: Max J. Ruckriegel, Lisa M. G\"achter, David Kealhofer, Mohsen Bahrami
Panah, Chuyao Tong, Christoph Adam, Michele Masseroni, Hadrien Duprez,
Rebekka Garreis, Kenji Watanabe, Takashi Taniguchi, Andreas Wallraff, Thomas
Ihn, Klaus Ensslin, and Wei Wister Huang
- Abstract summary: superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure.
We achieve sensitive and fast detection with a signal-to-noise ratio of 3.5 within 1 $mumathrms$ integration time.
Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
- Score: 0.14908922253160745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We implement circuit quantum electrodynamics (cQED) with quantum dots in
bilayer graphene, a maturing material platform for semiconductor qubits that
can host long-lived spin and valley states. The presented device combines a
high-impedance ($Z_\mathrm{r} \approx 1 \mathrm{k{\Omega}}$) superconducting
microwave resonator with a double quantum dot electrostatically defined in a
graphene-based van der Waals heterostructure. Electric dipole coupling between
the subsystems allows the resonator to sense the electric susceptibility of the
double quantum dot from which we reconstruct its charge stability diagram. We
achieve sensitive and fast detection with a signal-to-noise ratio of 3.5 within
1 ${\mu}\mathrm{s}$ integration time. The charge-photon interaction is
quantified in the dispersive and resonant regimes by comparing the
coupling-induced change in the resonator response to input-output theory,
yielding a maximal coupling strength of $g/2{\pi} = 49.7 \mathrm{MHz}$. Our
results introduce cQED as a probe for quantum dots in van der Waals materials
and indicate a path toward coherent charge-photon coupling with bilayer
graphene quantum dots.
Related papers
- Longitudinal (curvature) couplings of an $N$-level qudit to a
superconducting resonator at the adiabatic limit and beyond [0.0]
We investigate the coupling between a multi-level system, or qudit, and a superconducting (SC) resonator's electromagnetic field.
For the first time, we derive Hamiltonians describing the longitudinal multi-level interactions in a general dispersive regime.
We provide examples illustrating the transition from adiabatic to dispersive coupling in different qubit systems.
arXiv Detail & Related papers (2023-12-05T20:33:59Z) - Strong hole-photon coupling in planar Ge: probing the charge degree and
Wigner molecule states [0.0]
We present strong coupling between a hole charge qubit and microwave photons in a superconducting quantum interference device (SQUID) array resonator.
This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.
arXiv Detail & Related papers (2023-10-31T17:27:46Z) - Quantum phase transitions and cat states in cavity-coupled quantum dots [0.0]
We study double quantum dots coupled to a quasistatic cavity mode with high mode-volume compression.
electrons in different double quantum dots interact with each other via dipole-dipole (Coulomb) interaction.
We show that, in the strong coupling regime, both the ground and the first excited states of an array of double quantum dots are squeezed Schr"odinger cat states.
arXiv Detail & Related papers (2023-10-23T17:59:41Z) - Simulating polaritonic ground states on noisy quantum devices [0.0]
We introduce a general framework for simulating electron-photon coupled systems on small, noisy quantum devices.
To achieve chemical accuracy, we exploit various symmetries in qubit reduction methods.
We measure two properties: ground-state energy, fundamentally relevant to chemical reactivity, and photon number.
arXiv Detail & Related papers (2023-10-03T14:45:54Z) - On-Demand Generation of Indistinguishable Photons in the Telecom C-Band
using Quantum Dot Devices [31.114245664719455]
We demonstrate the coherent on-demand generation of in photons in the telecom C-band from single QD devices.
The research represents a significant advancement in photon-indistinguishability of single photons emitted directly in the telecom C-band.
arXiv Detail & Related papers (2023-06-14T17:59:03Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Strong coupling between a microwave photon and a singlet-triplet qubit [0.0]
We introduce a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator.
Experiments on even charge parity states and at large magnetic fields allow to identify the relevant spin states.
Results pave the way towards large-scale quantum system based on singlet-triplet qubits.
arXiv Detail & Related papers (2023-03-29T16:20:24Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Photon generation and entanglement in a double superconducting cavity [105.54048699217668]
We study the dynamical Casimir effect in a double superconducting cavity in a quantum electrodynamics architecture.
We study the creation of photons when the walls oscillate harmonically with a small amplitude.
arXiv Detail & Related papers (2022-07-18T16:43:47Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Gate reflectometry in dense quantum dot arrays [18.131612654397884]
We perform gate-voltage pulsing and gate-based reflectometry measurements on a dense 2$times$2 array of silicon quantum dots fabricated in a 300-mm-wafer foundry.
Our techniques may find use in the scaling of few-dot spin-qubit devices to large-scale quantum processors.
arXiv Detail & Related papers (2020-12-08T23:51:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.