Strong hole-photon coupling in planar Ge: probing the charge degree and
Wigner molecule states
- URL: http://arxiv.org/abs/2310.20661v1
- Date: Tue, 31 Oct 2023 17:27:46 GMT
- Title: Strong hole-photon coupling in planar Ge: probing the charge degree and
Wigner molecule states
- Authors: Franco De Palma, Fabian Oppliger, Wonjin Jang, Stefano Bosco, Mari\'an
Jan\'ik, Stefano Calcaterra, Georgios Katsaros, Giovanni Isella, Daniel Loss
and Pasquale Scarlino
- Abstract summary: We present strong coupling between a hole charge qubit and microwave photons in a superconducting quantum interference device (SQUID) array resonator.
This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semiconductor quantum dots (QDs) in planar germanium (Ge) heterostructures
have emerged as frontrunners for future hole-based quantum processors. Notably,
the large spin-orbit interaction of holes offers rapid, coherent electrical
control of spin states, which can be further beneficial for interfacing hole
spins to microwave photons in superconducting circuits via coherent
charge-photon coupling. Here, we present strong coupling between a hole charge
qubit, defined in a double quantum dot (DQD) in a planar Ge, and microwave
photons in a high-impedance ($Z_\mathrm{r} = 1.3 ~ \mathrm{k}\Omega$)
superconducting quantum interference device (SQUID) array resonator. Our
investigation reveals vacuum-Rabi splittings with coupling strengths up to
$g_{0}/2\pi = 260 ~ \mathrm{MHz}$, and a cooperativity of $C \sim 100$,
dependent on DQD tuning, confirming the strong charge-photon coupling regime
within planar Ge. Furthermore, utilizing the frequency tunability of our
resonator, we explore the quenched energy splitting associated with
strongly-correlated Wigner molecule (WM) states that emerge in Ge QDs. The
observed enhanced coherence of the WM excited state signals the presence of
distinct symmetries within related spin functions, serving as a precursor to
the strong coupling between photons and spin-charge hybrid qubits in planar Ge.
This work paves the way towards coherent quantum connections between remote
hole qubits in planar Ge, required to scale up hole-based quantum processors.
Related papers
- Dipole coupling of a bilayer graphene quantum dot to a high-impedance
microwave resonator [0.14908922253160745]
superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure.
We achieve sensitive and fast detection with a signal-to-noise ratio of 3.5 within 1 $mumathrms$ integration time.
Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
arXiv Detail & Related papers (2023-12-22T11:59:20Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Strong coupling between a microwave photon and a singlet-triplet qubit [0.0]
We introduce a zincblende InAs nanowire double quantum dot with strong spin-orbit interaction in a magnetic-field resilient, high-quality resonator.
Experiments on even charge parity states and at large magnetic fields allow to identify the relevant spin states.
Results pave the way towards large-scale quantum system based on singlet-triplet qubits.
arXiv Detail & Related papers (2023-03-29T16:20:24Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Strong coupling between a photon and a hole spin in silicon [0.0]
Coupling spins strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity.
We demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible MOS fabrication process.
arXiv Detail & Related papers (2022-06-28T15:26:35Z) - Spin-Phonon-Photon Strong Coupling in a Piezomechanical Nanocavity [0.0]
We introduce a hybrid tripartite quantum system for strong coupling between a semiconductor spin, a mechanical phonon, and a microwave photon.
We estimate photon-to-spin quantum state transfer fidelities exceeding 0.97 based on separately demonstrated device parameters.
arXiv Detail & Related papers (2022-02-23T03:45:39Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Split-Gate Cavity Coupler for Silicon Circuit Quantum Electrodynamics [0.0]
Coherent charge-photon and spin-photon coupling has recently been achieved in silicon double quantum dots (DQD)
We demonstrate a versatile split-gate cavity-coupler that allows more than one DQD to be coupled to the same microwave cavity.
arXiv Detail & Related papers (2020-03-02T18:24:10Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.