Deep Non-Parametric Time Series Forecaster
- URL: http://arxiv.org/abs/2312.14657v1
- Date: Fri, 22 Dec 2023 12:46:30 GMT
- Title: Deep Non-Parametric Time Series Forecaster
- Authors: Syama Sundar Rangapuram, Jan Gasthaus, Lorenzo Stella, Valentin
Flunkert, David Salinas, Yuyang Wang, Tim Januschowski
- Abstract summary: The proposed approach does not assume any parametric form for the predictive distribution and instead generates predictions by sampling from the empirical distribution according to a tunable strategy.
We develop a global version of the proposed method that automatically learns the sampling strategy by exploiting the information across multiple related time series.
- Score: 19.800783133682955
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents non-parametric baseline models for time series
forecasting. Unlike classical forecasting models, the proposed approach does
not assume any parametric form for the predictive distribution and instead
generates predictions by sampling from the empirical distribution according to
a tunable strategy. By virtue of this, the model is always able to produce
reasonable forecasts (i.e., predictions within the observed data range) without
fail unlike classical models that suffer from numerical stability on some data
distributions. Moreover, we develop a global version of the proposed method
that automatically learns the sampling strategy by exploiting the information
across multiple related time series. The empirical evaluation shows that the
proposed methods have reasonable and consistent performance across all
datasets, proving them to be strong baselines to be considered in one's
forecasting toolbox.
Related papers
- From Conformal Predictions to Confidence Regions [1.4272411349249627]
We introduce CCR, which employs a combination of conformal prediction intervals for the model outputs to establish confidence regions for model parameters.
We present coverage guarantees under minimal assumptions on noise and that is valid in finite sample regime.
Our approach is applicable to both split conformal predictions and black-box methodologies including full or cross-conformal approaches.
arXiv Detail & Related papers (2024-05-28T21:33:12Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
We propose a method for pooling that performs a weighted average over candidate model forecasts.
We test this method on two time-series forecasting problems: multi-step forecasting of the dynamics of the non-stationary Lorenz 63 equation, and one-step forecasting of the weekly incident deaths due to COVID-19.
arXiv Detail & Related papers (2023-10-24T22:59:56Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - A performance characteristic curve for model evaluation: the application
in information diffusion prediction [3.8711489380602804]
We propose a metric based on information entropy to quantify the randomness in diffusion data, then identify a scaling pattern between the randomness and the prediction accuracy of the model.
Data points in the patterns by different sequence lengths, system sizes, and randomness all collapse into a single curve, capturing a model's inherent capability of making correct predictions.
The validity of the curve is tested by three prediction models in the same family, reaching conclusions in line with existing studies.
arXiv Detail & Related papers (2023-09-18T07:32:57Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Meta-Forecasting by combining Global DeepRepresentations with Local
Adaptation [12.747008878068314]
We introduce a novel forecasting method called Meta Global-Local Auto-Regression (Meta-GLAR)
It adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts.
Our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
arXiv Detail & Related papers (2021-11-05T11:45:02Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series [11.004159006784977]
We propose a flexible nonlinear model that optimize quantile regression loss coupled with suitable regularization terms to maintain consistency of forecasts across hierarchies.
The theoretical framework introduced herein can be applied to any forecasting model with an underlying differentiable loss function.
arXiv Detail & Related papers (2021-02-25T00:59:01Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.