Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series
- URL: http://arxiv.org/abs/2102.12612v1
- Date: Thu, 25 Feb 2021 00:59:01 GMT
- Title: Simultaneously Reconciled Quantile Forecasting of Hierarchically Related
Time Series
- Authors: Xing Han, Sambarta Dasgupta, Joydeep Ghosh
- Abstract summary: We propose a flexible nonlinear model that optimize quantile regression loss coupled with suitable regularization terms to maintain consistency of forecasts across hierarchies.
The theoretical framework introduced herein can be applied to any forecasting model with an underlying differentiable loss function.
- Score: 11.004159006784977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many real-life applications involve simultaneously forecasting multiple time
series that are hierarchically related via aggregation or disaggregation
operations. For instance, commercial organizations often want to forecast
inventories simultaneously at store, city, and state levels for resource
planning purposes. In such applications, it is important that the forecasts, in
addition to being reasonably accurate, are also consistent w.r.t one another.
Although forecasting such hierarchical time series has been pursued by
economists and data scientists, the current state-of-the-art models use strong
assumptions, e.g., all forecasts being unbiased estimates, noise distribution
being Gaussian. Besides, state-of-the-art models have not harnessed the power
of modern nonlinear models, especially ones based on deep learning. In this
paper, we propose using a flexible nonlinear model that optimizes quantile
regression loss coupled with suitable regularization terms to maintain the
consistency of forecasts across hierarchies. The theoretical framework
introduced herein can be applied to any forecasting model with an underlying
differentiable loss function. A proof of optimality of our proposed method is
also provided. Simulation studies over a range of datasets highlight the
efficacy of our approach.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Deep Non-Parametric Time Series Forecaster [19.800783133682955]
The proposed approach does not assume any parametric form for the predictive distribution and instead generates predictions by sampling from the empirical distribution according to a tunable strategy.
We develop a global version of the proposed method that automatically learns the sampling strategy by exploiting the information across multiple related time series.
arXiv Detail & Related papers (2023-12-22T12:46:30Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Counterfactual Explanations for Time Series Forecasting [14.03870816983583]
We formulate the novel problem of counterfactual generation for time series forecasting, and propose an algorithm, called ForecastCF.
ForecastCF solves the problem by applying gradient-based perturbations to the original time series.
Our results show that ForecastCF outperforms the baseline in terms of counterfactual validity and data manifold closeness.
arXiv Detail & Related papers (2023-10-12T08:51:59Z) - End-to-End Modeling Hierarchical Time Series Using Autoregressive
Transformer and Conditional Normalizing Flow based Reconciliation [13.447952588934337]
We propose a novel end-to-end hierarchical time series forecasting model, based on conditioned normalizing flow-based autoregressive transformer reconciliation.
Unlike other state-of-the-art methods, we achieve the forecasting and reconciliation simultaneously without requiring any explicit post-processing step.
arXiv Detail & Related papers (2022-12-28T05:43:57Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
We introduce a mixture of heterogeneous experts framework called textttMECATS.
It simultaneously forecasts the values of a set of time series that are related through an aggregation hierarchy.
Different types of forecasting models can be employed as individual experts so that the form of each model can be tailored to the nature of the corresponding time series.
arXiv Detail & Related papers (2021-12-22T05:05:30Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.