Temporal Prediction and Evaluation of Brassica Growth in the Field using
Conditional Generative Adversarial Networks
- URL: http://arxiv.org/abs/2105.07789v1
- Date: Mon, 17 May 2021 13:00:01 GMT
- Title: Temporal Prediction and Evaluation of Brassica Growth in the Field using
Conditional Generative Adversarial Networks
- Authors: Lukas Drees, Laura Verena Junker-Frohn, Jana Kierdorf, Ribana Roscher
- Abstract summary: The prediction of plant growth is a major challenge, as it is affected by numerous and highly variable environmental factors.
This paper proposes a novel monitoring approach that comprises high- throughput imaging sensor measurements and their automatic analysis.
Our approach's core is a novel machine learning-based growth model based on conditional generative adversarial networks.
- Score: 1.2926587870771542
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Farmers frequently assess plant growth and performance as basis for making
decisions when to take action in the field, such as fertilization, weed
control, or harvesting. The prediction of plant growth is a major challenge, as
it is affected by numerous and highly variable environmental factors. This
paper proposes a novel monitoring approach that comprises high-throughput
imaging sensor measurements and their automatic analysis to predict future
plant growth. Our approach's core is a novel machine learning-based growth
model based on conditional generative adversarial networks, which is able to
predict the future appearance of individual plants. In experiments with RGB
time-series images of laboratory-grown Arabidopsis thaliana and field-grown
cauliflower plants, we show that our approach produces realistic, reliable, and
reasonable images of future growth stages. The automatic interpretation of the
generated images through neural network-based instance segmentation allows the
derivation of various phenotypic traits that describe plant growth.
Related papers
- Optimizing Resource Consumption in Diffusion Models through Hallucination Early Detection [87.22082662250999]
We introduce HEaD (Hallucination Early Detection), a new paradigm designed to swiftly detect incorrect generations at the beginning of the diffusion process.
We demonstrate that using HEaD saves computational resources and accelerates the generation process to get a complete image.
Our findings reveal that HEaD can save up to 12% of the generation time on a two objects scenario.
arXiv Detail & Related papers (2024-09-16T18:00:00Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
Agricultural production is facing severe challenges in the next decades induced by climate change and the need for sustainability.
Advancements in field management through non-chemical weeding by robots in combination with monitoring of crops by autonomous unmanned aerial vehicles (UAVs) are helpful to address these challenges.
The analysis of plant traits, called phenotyping, is an essential activity in plant breeding, it however involves a great amount of manual labor.
arXiv Detail & Related papers (2023-12-22T14:06:44Z) - Data-driven Crop Growth Simulation on Time-varying Generated Images
using Multi-conditional Generative Adversarial Networks [2.513679466277441]
We present a two-stage framework consisting first of an image prediction model and second of a growth estimation model.
The image prediction model is a conditional Wasserstein generative adversarial network (CWGAN)
In the generator of this model, conditional batch normalization (CBN) is used to integrate different conditions along with the input image.
These images are used by the second part of the framework for plant phenotyping by deriving plant-specific traits.
arXiv Detail & Related papers (2023-12-06T11:54:50Z) - PlantPlotGAN: A Physics-Informed Generative Adversarial Network for
Plant Disease Prediction [2.7409168462107347]
We propose PlantPlotGAN, a physics-informed generative model capable of creating synthetic multispectral plot images with realistic vegetation indices.
The results demonstrate that the synthetic imagery generated from PlantPlotGAN outperforms state-of-the-art methods regarding the Fr'echet inception distance.
arXiv Detail & Related papers (2023-10-27T16:56:28Z) - A Learned Simulation Environment to Model Plant Growth in Indoor Farming [0.0]
We developed a simulator to quantify the effect of changes in environmental parameters on plant growth in precision farming.
Our approach combines the processing of plant images with deep convolutional neural networks (CNN), growth curve modeling, and machine learning.
arXiv Detail & Related papers (2022-12-06T17:28:13Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
We propose a novel vision transformer with latent variables following an informative energy-based prior for salient object detection.
Both the vision transformer network and the energy-based prior model are jointly trained via Markov chain Monte Carlo-based maximum likelihood estimation.
With the generative vision transformer, we can easily obtain a pixel-wise uncertainty map from an image, which indicates the model confidence in predicting saliency from the image.
arXiv Detail & Related papers (2021-12-27T06:04:33Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Causal Discovery in Physical Systems from Videos [123.79211190669821]
Causal discovery is at the core of human cognition.
We consider the task of causal discovery from videos in an end-to-end fashion without supervision on the ground-truth graph structure.
arXiv Detail & Related papers (2020-07-01T17:29:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.