論文の概要: TACO: Topics in Algorithmic COde generation dataset
- arxiv url: http://arxiv.org/abs/2312.14852v2
- Date: Mon, 25 Dec 2023 13:32:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 11:13:07.584188
- Title: TACO: Topics in Algorithmic COde generation dataset
- Title(参考訳): TACO:アルゴリズムによるCOde生成データセットのトピック
- Authors: Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu,
Guang Liu, Zhi Jin, Ge Li
- Abstract要約: TACOは大規模コード生成データセットであり、アルゴリズムの光学性に重点を置いている。
トレーニングとテストセットには25433と1000のコーディング問題があり、最大155万の多様な解答がある。
各TACO問題には、タスクトピック、アルゴリズム、プログラミングスキル、難易度など、いくつかのきめ細かいラベルが含まれている。
- 参考スコア(独自算出の注目度): 46.25059619174516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce TACO, an open-source, large-scale code generation dataset, with
a focus on the optics of algorithms, designed to provide a more challenging
training dataset and evaluation benchmark in the field of code generation
models. TACO includes competition-level programming questions that are more
challenging, to enhance or evaluate problem understanding and reasoning
abilities in real-world programming scenarios. There are 25433 and 1000 coding
problems in training and test set, as well as up to 1.55 million diverse
solution answers. Moreover, each TACO problem includes several fine-grained
labels such as task topics, algorithms, programming skills, and difficulty
levels, providing a more precise reference for the training and evaluation of
code generation models. The dataset and evaluation scripts are available on
Hugging Face Hub (https://huggingface.co/datasets/BAAI/TACO) and Github
(https://github.com/FlagOpen/TACO).
- Abstract(参考訳): 我々は,オープンソースの大規模コード生成データセットであるtacoを紹介し,アルゴリズムの光学に重点を置いて,コード生成モデルの分野でより困難なトレーニングデータセットと評価ベンチマークを提供する。
TACOには、現実のプログラミングシナリオにおける問題理解と推論能力を向上または評価する、より難しい競合レベルのプログラミング質問が含まれている。
トレーニングとテストセットには25433と1000のコーディング問題があり、最大155万の多様な解答がある。
さらに、各TACO問題には、タスクトピック、アルゴリズム、プログラミングスキル、難易度といったいくつかのきめ細かいラベルが含まれており、コード生成モデルのトレーニングと評価をより正確に参照している。
データセットと評価スクリプトはHugging Face Hub(https://huggingface.co/datasets/BAAI/TACO)とGithub(https://github.com/FlagOpen/TACO)で入手できる。
関連論文リスト
- ComplexCodeEval: A Benchmark for Evaluating Large Code Models on More Complex Code [29.178248778212588]
ComplexCodeEvalは、様々な開発タスクで大きな言語モデル(LLM)を評価するために設計されたベンチマークである。
これには、上位のGitHubリポジトリから3,897のJavaサンプルと7,184のPythonサンプルが含まれている。
論文 参考訳(メタデータ) (2024-09-16T13:43:04Z) - Estimating Difficulty Levels of Programming Problems with Pre-trained Model [18.92661958433282]
プログラミング問題の難易度は、生徒の適応学習を導く上で不可欠な基準となっている。
テキスト記述とコードの解の例から,各プログラム問題の難易度自動推定の問題を定式化する。
この問題に対処するため,テキストモダリティとコードモダリティの2つの事前学習モデルを統一モデルに分割することを提案する。
論文 参考訳(メタデータ) (2024-06-13T05:38:20Z) - Enhancing Human-like Multi-Modal Reasoning: A New Challenging Dataset
and Comprehensive Framework [51.44863255495668]
マルチモーダル推論は、人間のような知性を示す人工知能システムの追求において重要な要素である。
提案するマルチモーダル推論(COCO-MMR)データセットは,オープンエンド質問の集合を包含する新しいデータセットである。
画像とテキストエンコーダを強化するために,マルチホップ・クロスモーダル・アテンションや文レベルのコントラスト学習などの革新的な手法を提案する。
論文 参考訳(メタデータ) (2023-07-24T08:58:25Z) - Program of Thoughts Prompting: Disentangling Computation from Reasoning
for Numerical Reasoning Tasks [108.4568236569645]
CoT(Chain-of-thinkts prompting)は、これらのタスクに対する最先端の手法である。
本稿では、言語モデルを用いて推論過程をプログラムとして表現する「思考プログラム(PoT)」を提案する。
PoTは、評価されたすべてのデータセットに対して、CoTに対する平均的なパフォーマンス向上を約12%示すことができる。
論文 参考訳(メタデータ) (2022-11-22T21:06:00Z) - CoSQA: 20,000+ Web Queries for Code Search and Question Answering [63.92224685262063]
CoSQAデータセットには、自然言語クエリとコードのペア用の20,604ラベルが含まれている。
本稿では,クエリコードマッチングを強化するために,CoCLRと呼ばれる対照的な学習手法を提案する。
我々は,CodeXGLUEを同じCodeBERTモデルで評価し,CoSQAのトレーニングにより,コード質問応答の精度が5.1%向上したことを示す。
論文 参考訳(メタデータ) (2021-05-27T15:37:21Z) - Measuring Coding Challenge Competence With APPS [54.22600767666257]
コード生成のベンチマークであるAPPSを紹介する。
私たちのベンチマークには1万の問題が含まれています。
GPT-Neoのような最近のモデルでは、導入問題のテストケースの約15%をパスできる。
論文 参考訳(メタデータ) (2021-05-20T17:58:42Z) - CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding
and Generation [72.90209988513995]
CodeXGLUEは、プログラムの理解と生成のための機械学習研究を促進するためのベンチマークデータセットである。
CodeXGLUEには、14データセットにわたる10タスクのコレクションと、モデル評価と比較のためのプラットフォームが含まれている。
論文 参考訳(メタデータ) (2021-02-09T06:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。