論文の概要: Reinforcement Learning for Safe Occupancy Strategies in Educational
Spaces during an Epidemic
- arxiv url: http://arxiv.org/abs/2312.15163v1
- Date: Sat, 23 Dec 2023 04:51:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 19:24:12.306533
- Title: Reinforcement Learning for Safe Occupancy Strategies in Educational
Spaces during an Epidemic
- Title(参考訳): エピデミックにおける教育空間における安全な職業戦略の強化学習
- Authors: Elizabeth Akinyi Ondula, Bhaskar Krishnamachari
- Abstract要約: 本研究は、感染の最小化と教育環境における対人交流の最大化を両立させる戦略を開発するための強化学習(RL)に焦点を当てる。
感染拡大をシミュレートし,様々なRLアルゴリズムの探索を容易にする新しいツールであるSafeCampusを紹介する。
- 参考スコア(独自算出の注目度): 9.68145635795782
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Epidemic modeling, encompassing deterministic and stochastic approaches, is
vital for understanding infectious diseases and informing public health
strategies. This research adopts a prescriptive approach, focusing on
reinforcement learning (RL) to develop strategies that balance minimizing
infections with maximizing in-person interactions in educational settings. We
introduce SafeCampus , a novel tool that simulates infection spread and
facilitates the exploration of various RL algorithms in response to epidemic
challenges. SafeCampus incorporates a custom RL environment, informed by
stochastic epidemic models, to realistically represent university campus
dynamics during epidemics. We evaluate Q-learning for a discretized state space
which resulted in a policy matrix that not only guides occupancy decisions
under varying epidemic conditions but also illustrates the inherent trade-off
in epidemic management. This trade-off is characterized by the dilemma between
stricter measures, which may effectively reduce infections but impose less
educational benefit (more in-person interactions), and more lenient policies,
which could lead to higher infection rates.
- Abstract(参考訳): 決定論的アプローチと確率論的アプローチを含むエピデミックモデリングは、感染症を理解し、公衆衛生戦略を伝えるために不可欠である。
本研究は,教育環境における感染の最小化と対人対話の最大化のバランスをとるための強化学習(rl)に焦点をあてた規範的アプローチを採用している。
我々は,感染拡大をシミュレートし,様々なrlアルゴリズムの探索を容易にする新しいツールであるsafecampusを紹介する。
SafeCampusは、確率的流行モデルによって知らされる独自のRL環境を組み込んで、流行時の大学キャンパスのダイナミクスを現実的に表現している。
流行状況の異なる状況下での占有判断を導くだけでなく、流行管理に固有のトレードオフを示す政策行列を導いた非正規化状態空間に対するq-learningを評価した。
このトレードオフは、感染を効果的に減らすが教育上の利益(より対人的相互作用)を少なくするより厳格な措置と、感染率を上げる可能性のあるより寛大な政策とのジレンマによって特徴づけられる。
関連論文リスト
- Epidemiology-Aware Neural ODE with Continuous Disease Transmission Graph [14.28921518883576]
持続疾患透過グラフ(EARTH)を用いた疫学対応ニューラル・オードという,革新的なエンドツーエンドフレームワークを提案する。
本稿ではまず,感染メカニズムとニューラルODEアプローチをシームレスに統合するEANOを提案する。
また,グローバルな感染動向をモデル化するためにGLTGを導入し,これらの信号を利用して局所的な感染を動的に誘導する。
論文 参考訳(メタデータ) (2024-09-28T04:07:16Z) - Agent-Based Model: Simulating a Virus Expansion Based on the Acceptance
of Containment Measures [65.62256987706128]
比較疫学モデルは、疾患の状態に基づいて個人を分類する。
我々は、適応されたSEIRDモデルと市民のための意思決定モデルを組み合わせたABMアーキテクチャを提案する。
スペイン・ア・コルナにおけるSARS-CoV-2感染症の進行状況について検討した。
論文 参考訳(メタデータ) (2023-07-28T08:01:05Z) - Evaluating COVID-19 vaccine allocation policies using Bayesian $m$-top
exploration [53.122045119395594]
マルチアーム・バンディット・フレームワークを用いてワクチンのアロケーション戦略を評価する新しい手法を提案する。
$m$-top Exploringにより、アルゴリズムは最高のユーティリティを期待する$m$ポリシーを学ぶことができる。
ベルギーのCOVID-19流行を個人モデルSTRIDEを用いて検討し、予防接種方針のセットを学習する。
論文 参考訳(メタデータ) (2023-01-30T12:22:30Z) - On Pathologies in KL-Regularized Reinforcement Learning from Expert
Demonstrations [79.49929463310588]
我々は,KL-正規化強化学習と行動基準ポリシを併用することで,病理訓練のダイナミクスに悩まされることを示した。
非パラメトリックな行動参照ポリシーで治療できることを示す。
論文 参考訳(メタデータ) (2022-12-28T16:29:09Z) - Exploring the Pareto front of multi-objective COVID-19 mitigation
policies using reinforcement learning [1.7056617973440933]
感染症の発生は公衆衛生や社会プロセスに破壊的な影響を及ぼす可能性がある。
現在の研究は、病原体の攻撃率のような単一の目的でポリシーを最適化することに焦点を当てている。
深層多目的強化学習を適用し,最先端のアルゴリズムを用いて解の集合を学習する。
論文 参考訳(メタデータ) (2022-04-11T11:55:06Z) - Reinforced Contact Tracing and Epidemic Intervention [8.141401074784406]
我々は,スマートディファレンスコントロール戦略を探索するIDRLECA(Reinforcement Learning Epidemic Control Agent)を開発した。
IDRLECAは感染を非常に低いレベルで抑制し、95%以上の人体移動を維持できる。
論文 参考訳(メタデータ) (2021-02-04T08:31:48Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - Multi-Objective Model-based Reinforcement Learning for Infectious
Disease Control [19.022696762983017]
新型コロナウイルス(COVID-19)などの重症感染症が公衆衛生に大きな脅威をもたらす。
学校閉鎖や自宅待機命令などの厳格な規制措置は大きな効果がある一方で、経済的損失も大きい。
本稿では,データ駆動型意思決定の促進と長期的コストの最小化を目的とした多目的モデルに基づく強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-09T23:55:27Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z) - Deep reinforcement learning for large-scale epidemic control [0.3694429692322631]
本研究では,パンデミックインフルエンザの予防戦略を自動学習するための深層強化学習手法について検討する。
我々のモデルは、強化学習技術が実現できるように、複雑さと計算効率のバランスをとる。
この実験により, 大規模状態空間を持つ複雑な疫学モデルにおいて, 深層強化学習を用いて緩和策を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-03-30T17:57:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。