Do LLM Agents Exhibit Social Behavior?
- URL: http://arxiv.org/abs/2312.15198v2
- Date: Thu, 22 Feb 2024 04:31:26 GMT
- Title: Do LLM Agents Exhibit Social Behavior?
- Authors: Yan Leng, Yuan Yuan
- Abstract summary: This study investigates the extent to which Large Language Models (LLMs) exhibit key social interaction principles.
Our analysis suggests that LLM agents appear to exhibit a range of human-like social behaviors.
LLMs demonstrate a pronounced fairness preference, weaker positive reciprocity, and a more calculating approach in social learning compared to humans.
- Score: 6.018288992619851
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advances of Large Language Models (LLMs) are expanding their utility in
both academic research and practical applications. Recent social science
research has explored the use of these ``black-box'' LLM agents for simulating
complex social systems and potentially substituting human subjects in
experiments. Our study delves into this emerging domain, investigating the
extent to which LLMs exhibit key social interaction principles, such as social
learning, social preference, and cooperative behavior (indirect reciprocity),
in their interactions with humans and other agents. We develop a framework for
our study, wherein classical laboratory experiments involving human subjects
are adapted to use LLM agents. This approach involves step-by-step reasoning
that mirrors human cognitive processes and zero-shot learning to assess the
innate preferences of LLMs. Our analysis of LLM agents' behavior includes both
the primary effects and an in-depth examination of the underlying mechanisms.
Focusing on GPT-4, our analyses suggest that LLM agents appear to exhibit a
range of human-like social behaviors such as distributional and reciprocity
preferences, responsiveness to group identity cues, engagement in indirect
reciprocity, and social learning capabilities. However, our analysis also
reveals notable differences: LLMs demonstrate a pronounced fairness preference,
weaker positive reciprocity, and a more calculating approach in social learning
compared to humans. These insights indicate that while LLMs hold great promise
for applications in social science research, such as in laboratory experiments
and agent-based modeling, the subtle behavioral differences between LLM agents
and humans warrant further investigation. Careful examination and development
of protocols in evaluating the social behaviors of LLMs are necessary before
directly applying these models to emulate human behavior.
Related papers
- Integrating LLM in Agent-Based Social Simulation: Opportunities and Challenges [0.7739037410679168]
The paper reviews recent findings on the ability of Large Language Models to replicate key aspects of human cognition.<n>The second part surveys emerging applications of LLMs in multi-agent simulation frameworks.<n>The paper concludes by advocating for hybrid approaches that integrate LLMs into traditional agent-based modeling platforms.
arXiv Detail & Related papers (2025-07-25T15:15:35Z) - How large language models judge and influence human cooperation [82.07571393247476]
We assess how state-of-the-art language models judge cooperative actions.<n>We observe a remarkable agreement in evaluating cooperation against good opponents.<n>We show that the differences revealed between models can significantly impact the prevalence of cooperation.
arXiv Detail & Related papers (2025-06-30T09:14:42Z) - Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games [87.5673042805229]
How large language models balance self-interest and collective well-being is a critical challenge for ensuring alignment, robustness, and safe deployment.<n>We adapt a public goods game with institutional choice from behavioral economics, allowing us to observe how different LLMs navigate social dilemmas.<n>Surprisingly, we find that reasoning LLMs, such as the o1 series, struggle significantly with cooperation.
arXiv Detail & Related papers (2025-06-29T15:02:47Z) - SocialEval: Evaluating Social Intelligence of Large Language Models [70.90981021629021]
Social Intelligence (SI) equips humans with interpersonal abilities to behave wisely in navigating social interactions to achieve social goals.<n>This presents an operational evaluation paradigm: outcome-oriented goal achievement evaluation and process-oriented interpersonal ability evaluation.<n>We propose SocialEval, a script-based bilingual SI benchmark, integrating outcome- and process-oriented evaluation by manually crafting narrative scripts.
arXiv Detail & Related papers (2025-06-01T08:36:51Z) - Bayesian Teaching Enables Probabilistic Reasoning in Large Language Models [50.16340812031201]
We show that large language models (LLMs) do not update their beliefs as expected from the Bayesian framework.
We teach the LLMs to reason in a Bayesian manner by training them to mimic the predictions of an optimal Bayesian model.
arXiv Detail & Related papers (2025-03-21T20:13:04Z) - Mind the (Belief) Gap: Group Identity in the World of LLMs [22.96432452893247]
Social biases and belief-driven behaviors can significantly impact Large Language Models (LLMs) decisions on several tasks.
We present a multi-agent framework that simulates belief congruence, a classical group psychology theory that plays a crucial role in shaping societal interactions and preferences.
arXiv Detail & Related papers (2025-03-03T19:50:52Z) - Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation [51.44040615856536]
This paper analyzes large language models' ability to simulate social media engagement through action guided response generation.
We benchmark GPT-4o-mini, O1-mini, and DeepSeek-R1 in social media engagement simulation regarding a major societal event.
arXiv Detail & Related papers (2025-02-17T17:43:08Z) - Distributive Fairness in Large Language Models: Evaluating Alignment with Human Values [13.798198972161657]
A number of societal problems involve the distribution of resources, where fairness, along with economic efficiency, play a critical role in the desirability of outcomes.
This paper examines whether large language models (LLMs) adhere to fundamental fairness concepts and investigate their alignment with human preferences.
arXiv Detail & Related papers (2025-02-01T04:24:47Z) - Engagement-Driven Content Generation with Large Language Models [8.049552839071918]
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions.
This study investigates the potential social impact of LLMs in interconnected users and complex opinion dynamics.
arXiv Detail & Related papers (2024-11-20T10:40:08Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - GLEE: A Unified Framework and Benchmark for Language-based Economic Environments [19.366120861935105]
Large Language Models (LLMs) show significant potential in economic and strategic interactions.
These questions become crucial concerning the economic and societal implications of integrating LLM-based agents into real-world data-driven systems.
We introduce a benchmark for standardizing research on two-player, sequential, language-based games.
arXiv Detail & Related papers (2024-10-07T17:55:35Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
We study the limitations of Large Language Models in simulating human interactions.
Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases.
These results underscore the need for further research to develop methods that help agents overcome these biases.
arXiv Detail & Related papers (2024-02-06T14:51:55Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - SurveyLM: A platform to explore emerging value perspectives in augmented
language models' behaviors [0.4724825031148411]
This white paper presents our work on SurveyLM, a platform for analyzing augmented language models' (ALMs) emergent alignment behaviors.
We apply survey and experimental methodologies, traditionally used in studying social behaviors, to evaluate ALMs systematically.
We aim to shed light on factors influencing ALMs' emergent behaviors, facilitate their alignment with human intentions and expectations, and thereby contributed to the responsible development and deployment of advanced social AI systems.
arXiv Detail & Related papers (2023-08-01T12:59:36Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.