Do LLM Agents Exhibit Social Behavior?
- URL: http://arxiv.org/abs/2312.15198v3
- Date: Tue, 15 Oct 2024 20:27:04 GMT
- Title: Do LLM Agents Exhibit Social Behavior?
- Authors: Yan Leng, Yuan Yuan,
- Abstract summary: State-Understanding-Value-Action (SUVA) is a framework to systematically analyze responses in social contexts.
It assesses social behavior through both their final decisions and the response generation processes leading to those decisions.
We demonstrate that utterance-based reasoning reliably predicts LLMs' final actions.
- Score: 5.094340963261968
- License:
- Abstract: As LLMs increasingly take on roles in human-AI interactions and autonomous AI systems, understanding their social behavior becomes important for informed use and continuous improvement. However, their behaviors in social interactions with humans and other agents, as well as the mechanisms shaping their responses, remain underexplored. To address this gap, we introduce a novel probabilistic framework, State-Understanding-Value-Action (SUVA), to systematically analyze LLM responses in social contexts based on their textual outputs (i.e., utterances). Using canonical behavioral economics games and social preference concepts relatable to LLM users, SUVA assesses LLMs' social behavior through both their final decisions and the response generation processes leading to those decisions. Our analysis of eight LLMs -- including two GPT, four LLaMA, and two Mistral models -- suggests that most models do not generate decisions aligned solely with self-interest; instead, they often produce responses that reflect social welfare considerations and display patterns consistent with direct and indirect reciprocity. Additionally, higher-capacity models more frequently display group identity effects. The SUVA framework also provides explainable tools -- including tree-based visualizations and probabilistic dependency analysis -- to elucidate how factors in LLMs' utterance-based reasoning influence their decisions. We demonstrate that utterance-based reasoning reliably predicts LLMs' final actions; references to altruism, fairness, and cooperation in the reasoning increase the likelihood of prosocial actions, while mentions of self-interest and competition reduce them. Overall, our framework enables practitioners to assess LLMs for applications involving social interactions, and provides researchers with a structured method to interpret how LLM behavior arises from utterance-based reasoning.
Related papers
- Engagement-Driven Content Generation with Large Language Models [8.049552839071918]
Large Language Models (LLMs) exhibit significant persuasion capabilities in one-on-one interactions.
This study investigates the potential social impact of LLMs in interconnected users and complex opinion dynamics.
arXiv Detail & Related papers (2024-11-20T10:40:08Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - GLEE: A Unified Framework and Benchmark for Language-based Economic Environments [19.366120861935105]
Large Language Models (LLMs) show significant potential in economic and strategic interactions.
These questions become crucial concerning the economic and societal implications of integrating LLM-based agents into real-world data-driven systems.
We introduce a benchmark for standardizing research on two-player, sequential, language-based games.
arXiv Detail & Related papers (2024-10-07T17:55:35Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) can estimate causal effects under interventions on different parts of a system.
We conduct empirical analyses to evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.
We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types, and enable a study of intervention-based reasoning.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Explaining Large Language Models Decisions Using Shapley Values [1.223779595809275]
Large language models (LLMs) have opened up exciting possibilities for simulating human behavior and cognitive processes.
However, the validity of utilizing LLMs as stand-ins for human subjects remains uncertain.
This paper presents a novel approach based on Shapley values to interpret LLM behavior and quantify the relative contribution of each prompt component to the model's output.
arXiv Detail & Related papers (2024-03-29T22:49:43Z) - Systematic Biases in LLM Simulations of Debates [12.933509143906141]
We study the limitations of Large Language Models in simulating human interactions.
Our findings indicate a tendency for LLM agents to conform to the model's inherent social biases.
These results underscore the need for further research to develop methods that help agents overcome these biases.
arXiv Detail & Related papers (2024-02-06T14:51:55Z) - Exploring Collaboration Mechanisms for LLM Agents: A Social Psychology View [60.80731090755224]
This paper probes the collaboration mechanisms among contemporary NLP systems by practical experiments with theoretical insights.
We fabricate four unique societies' comprised of LLM agents, where each agent is characterized by a specific trait' (easy-going or overconfident) and engages in collaboration with a distinct thinking pattern' (debate or reflection)
Our results further illustrate that LLM agents manifest human-like social behaviors, such as conformity and consensus reaching, mirroring social psychology theories.
arXiv Detail & Related papers (2023-10-03T15:05:52Z) - SurveyLM: A platform to explore emerging value perspectives in augmented
language models' behaviors [0.4724825031148411]
This white paper presents our work on SurveyLM, a platform for analyzing augmented language models' (ALMs) emergent alignment behaviors.
We apply survey and experimental methodologies, traditionally used in studying social behaviors, to evaluate ALMs systematically.
We aim to shed light on factors influencing ALMs' emergent behaviors, facilitate their alignment with human intentions and expectations, and thereby contributed to the responsible development and deployment of advanced social AI systems.
arXiv Detail & Related papers (2023-08-01T12:59:36Z) - Training Socially Aligned Language Models on Simulated Social
Interactions [99.39979111807388]
Social alignment in AI systems aims to ensure that these models behave according to established societal values.
Current language models (LMs) are trained to rigidly replicate their training corpus in isolation.
This work presents a novel training paradigm that permits LMs to learn from simulated social interactions.
arXiv Detail & Related papers (2023-05-26T14:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.