Privacy-Preserved Neural Graph Databases
- URL: http://arxiv.org/abs/2312.15591v5
- Date: Tue, 18 Jun 2024 03:35:51 GMT
- Title: Privacy-Preserved Neural Graph Databases
- Authors: Qi Hu, Haoran Li, Jiaxin Bai, Zihao Wang, Yangqiu Song,
- Abstract summary: We propose a privacy-preserved neural graph database (P-NGDB) framework to alleviate the risks of privacy leakage in NGDBs.
We introduce adversarial training techniques in the training stage to enforce the NGDBs to generate indistinguishable answers when queried with private information.
- Score: 48.57788773216699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the era of large language models (LLMs), efficient and accurate data retrieval has become increasingly crucial for the use of domain-specific or private data in the retrieval augmented generation (RAG). Neural graph databases (NGDBs) have emerged as a powerful paradigm that combines the strengths of graph databases (GDBs) and neural networks to enable efficient storage, retrieval, and analysis of graph-structured data which can be adaptively trained with LLMs. The usage of neural embedding storage and Complex neural logical Query Answering (CQA) provides NGDBs with generalization ability. When the graph is incomplete, by extracting latent patterns and representations, neural graph databases can fill gaps in the graph structure, revealing hidden relationships and enabling accurate query answering. Nevertheless, this capability comes with inherent trade-offs, as it introduces additional privacy risks to the domain-specific or private databases. Malicious attackers can infer more sensitive information in the database using well-designed queries such as from the answer sets of where Turing Award winners born before 1950 and after 1940 lived, the living places of Turing Award winner Hinton are probably exposed, although the living places may have been deleted in the training stage due to the privacy concerns. In this work, we propose a privacy-preserved neural graph database (P-NGDB) framework to alleviate the risks of privacy leakage in NGDBs. We introduce adversarial training techniques in the training stage to enforce the NGDBs to generate indistinguishable answers when queried with private information, enhancing the difficulty of inferring sensitive information through combinations of multiple innocuous queries.
Related papers
- GCON: Differentially Private Graph Convolutional Network via Objective Perturbation [27.279817693305183]
Graph Convolutional Networks (GCNs) are a popular machine learning model with a wide range of applications in graph analytics.
When the underlying graph data contains sensitive information such as interpersonal relationships, a GCN trained without privacy-protection measures could be exploited to extract private data.
We propose GCON, a novel and effective solution for training GCNs with edge differential privacy.
arXiv Detail & Related papers (2024-07-06T09:59:56Z) - Federated Neural Graph Databases [53.03085605769093]
We propose Federated Neural Graph Database (FedNGDB), a novel framework that enables reasoning over multi-source graph-based data while preserving privacy.
Unlike existing methods, FedNGDB can handle complex graph structures and relationships, making it suitable for various downstream tasks.
arXiv Detail & Related papers (2024-02-22T14:57:44Z) - A Survey on Privacy in Graph Neural Networks: Attacks, Preservation, and
Applications [76.88662943995641]
Graph Neural Networks (GNNs) have gained significant attention owing to their ability to handle graph-structured data.
To address this issue, researchers have started to develop privacy-preserving GNNs.
Despite this progress, there is a lack of a comprehensive overview of the attacks and the techniques for preserving privacy in the graph domain.
arXiv Detail & Related papers (2023-08-31T00:31:08Z) - A Unified Framework of Graph Information Bottleneck for Robustness and
Membership Privacy [43.11374582152925]
Graph Neural Networks (GNNs) have achieved great success in modeling graph-structured data.
GNNs are vulnerable to adversarial attacks which can fool the GNN model to make desired predictions.
In this work, we study a novel problem of developing robust and membership privacy-preserving GNNs.
arXiv Detail & Related papers (2023-06-14T16:11:00Z) - Neural Graph Reasoning: Complex Logical Query Answering Meets Graph
Databases [63.96793270418793]
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning.
We introduce the concept of Neural Graph Database (NGDBs)
NGDB consists of a Neural Graph Storage and a Neural Graph Engine.
arXiv Detail & Related papers (2023-03-26T04:03:37Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
We propose a novel Privacy-Preserving neural Graph Matching network model, named PPGM, for graph similarity learning.
To prevent reconstruction attacks, the proposed model does not communicate node-level representations between devices.
To alleviate the attacks to graph properties, the obfuscated features that contain information from both vectors are communicated.
arXiv Detail & Related papers (2022-10-21T04:38:25Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
Graph Neural Networks (GNNs) are powerful models designed for graph data that learn node representation.
Recent studies have shown that GNNs can raise significant privacy concerns when graph data contain sensitive information.
We propose GAP, a novel differentially private GNN that safeguards privacy of nodes and edges.
arXiv Detail & Related papers (2022-03-02T08:58:07Z) - Locally Private Graph Neural Networks [12.473486843211573]
We study the problem of node data privacy, where graph nodes have potentially sensitive data that is kept private.
We develop a privacy-preserving, architecture-agnostic GNN learning algorithm with formal privacy guarantees.
Experiments conducted over real-world datasets demonstrate that our method can maintain a satisfying level of accuracy with low privacy loss.
arXiv Detail & Related papers (2020-06-09T22:36:06Z) - CryptoSPN: Privacy-preserving Sum-Product Network Inference [84.88362774693914]
We present a framework for privacy-preserving inference of sum-product networks (SPNs)
CryptoSPN achieves highly efficient and accurate inference in the order of seconds for medium-sized SPNs.
arXiv Detail & Related papers (2020-02-03T14:49:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.