RelGNN: Composite Message Passing for Relational Deep Learning
- URL: http://arxiv.org/abs/2502.06784v1
- Date: Mon, 10 Feb 2025 18:58:40 GMT
- Title: RelGNN: Composite Message Passing for Relational Deep Learning
- Authors: Tianlang Chen, Charilaos Kanatsoulis, Jure Leskovec,
- Abstract summary: We introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases.
At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures.
RelGNN consistently achieves state-of-the-art accuracy with up to 25% improvement.
- Score: 56.48834369525997
- License:
- Abstract: Predictive tasks on relational databases are critical in real-world applications spanning e-commerce, healthcare, and social media. To address these tasks effectively, Relational Deep Learning (RDL) encodes relational data as graphs, enabling Graph Neural Networks (GNNs) to exploit relational structures for improved predictions. However, existing heterogeneous GNNs often overlook the intrinsic structural properties of relational databases, leading to modeling inefficiencies. Here we introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases. At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures. Building upon these atomic routes, RelGNN designs new composite message passing mechanisms between heterogeneous nodes, allowing direct single-hop interactions between them. This approach avoids redundant aggregations and mitigates information entanglement, ultimately leading to more efficient and accurate predictive modeling. RelGNN is evaluated on 30 diverse real-world tasks from RelBench (Fey et al., 2024), and consistently achieves state-of-the-art accuracy with up to 25% improvement.
Related papers
- COMBINEX: A Unified Counterfactual Explainer for Graph Neural Networks via Node Feature and Structural Perturbations [6.894071825948456]
We propose COMBINEX, a novel GNN explainer that generates counterfactual explanations for both node and graph classification tasks.
Unlike prior methods, which treat structural and feature-based changes independently, COMBINEX optimally balances modifications to edges and node features.
This unified approach ensures minimal yet effective changes required to flip a model's prediction, resulting in realistic and interpretable counterfactuals.
arXiv Detail & Related papers (2025-02-14T12:17:24Z) - Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Revisiting Heterophily For Graph Neural Networks [42.41238892727136]
Graph Neural Networks (GNNs) extend basic Neural Networks (NNs) by using graph structures based on the relational inductive bias (homophily assumption)
Recent work has identified a non-trivial set of datasets where their performance compared to NNs is not satisfactory.
arXiv Detail & Related papers (2022-10-14T08:00:26Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
Heterogeneous graph neural networks (HGNNs) have powerful capability to embed rich structural and semantic information of a heterogeneous graph into node representations.
Existing HGNNs inherit many mechanisms from graph neural networks (GNNs) over homogeneous graphs, especially the attention mechanism and the multi-layer structure.
This paper conducts an in-depth and detailed study of these mechanisms and proposes Simple and Efficient Heterogeneous Graph Neural Network (SeHGNN)
arXiv Detail & Related papers (2022-07-06T10:01:46Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Graph Ordering Attention Networks [22.468776559433614]
Graph Neural Networks (GNNs) have been successfully used in many problems involving graph-structured data.
We introduce the Graph Ordering Attention (GOAT) layer, a novel GNN component that captures interactions between nodes in a neighborhood.
GOAT layer demonstrates its increased performance in modeling graph metrics that capture complex information.
arXiv Detail & Related papers (2022-04-11T18:13:19Z) - ARM-Net: Adaptive Relation Modeling Network for Structured Data [29.94433633729326]
ARM-Net is an adaptive relation modeling network tailored for structured data and a lightweight framework ARMOR based on ARM-Net for relational data.
We show that ARM-Net consistently outperforms existing models and provides more interpretable predictions for datasets.
arXiv Detail & Related papers (2021-07-05T07:37:24Z) - Reinforced Neighborhood Selection Guided Multi-Relational Graph Neural
Networks [68.9026534589483]
RioGNN is a novel Reinforced, recursive and flexible neighborhood selection guided multi-relational Graph Neural Network architecture.
RioGNN can learn more discriminative node embedding with enhanced explainability due to the recognition of individual importance of each relation.
arXiv Detail & Related papers (2021-04-16T04:30:06Z) - Policy-GNN: Aggregation Optimization for Graph Neural Networks [60.50932472042379]
Graph neural networks (GNNs) aim to model the local graph structures and capture the hierarchical patterns by aggregating the information from neighbors.
It is a challenging task to develop an effective aggregation strategy for each node, given complex graphs and sparse features.
We propose Policy-GNN, a meta-policy framework that models the sampling procedure and message passing of GNNs into a combined learning process.
arXiv Detail & Related papers (2020-06-26T17:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.