論文の概要: Towards Real-World Blind Face Restoration with Generative Diffusion Prior
- arxiv url: http://arxiv.org/abs/2312.15736v2
- Date: Mon, 18 Mar 2024 12:23:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 23:41:33.458547
- Title: Towards Real-World Blind Face Restoration with Generative Diffusion Prior
- Title(参考訳): 生成拡散を先行した実世界ブラインド顔復元に向けて
- Authors: Xiaoxu Chen, Jingfan Tan, Tao Wang, Kaihao Zhang, Wenhan Luo, Xiaochun Cao,
- Abstract要約: ブラインド顔の復元はコンピュータビジョンにおいて重要な課題であり、広範囲の応用により注目されている。
低画質の顔画像から特徴を効果的に抽出するBFRffusionを提案する。
また、人種、性別、年齢といったバランスのとれた属性を備えたPFHQというプライバシ保護顔データセットも構築しています。
- 参考スコア(独自算出の注目度): 69.84480964328465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blind face restoration is an important task in computer vision and has gained significant attention due to its wide-range applications. Previous works mainly exploit facial priors to restore face images and have demonstrated high-quality results. However, generating faithful facial details remains a challenging problem due to the limited prior knowledge obtained from finite data. In this work, we delve into the potential of leveraging the pretrained Stable Diffusion for blind face restoration. We propose BFRffusion which is thoughtfully designed to effectively extract features from low-quality face images and could restore realistic and faithful facial details with the generative prior of the pretrained Stable Diffusion. In addition, we build a privacy-preserving face dataset called PFHQ with balanced attributes like race, gender, and age. This dataset can serve as a viable alternative for training blind face restoration networks, effectively addressing privacy and bias concerns usually associated with the real face datasets. Through an extensive series of experiments, we demonstrate that our BFRffusion achieves state-of-the-art performance on both synthetic and real-world public testing datasets for blind face restoration and our PFHQ dataset is an available resource for training blind face restoration networks. The codes, pretrained models, and dataset are released at https://github.com/chenxx89/BFRffusion.
- Abstract(参考訳): ブラインド顔の復元はコンピュータビジョンにおいて重要な課題であり、広範囲の応用により注目されている。
以前の研究は主に顔画像の復元に顔の先行性を利用しており、高品質な結果を示している。
しかし、有限データから得られる知識が限られているため、忠実な顔の詳細を生成することは難しい問題である。
本研究では,前訓練した安定拡散をブラインドフェイス修復に活用する可能性を探る。
低画質の顔画像から特徴を効果的に抽出するように設計されたBFRffusionを提案する。
さらに、人種、性別、年齢といったバランスのとれた属性を備えたプライバシ保護顔データセットであるPFHQを構築しています。
このデータセットは、ブラインドフェイス復元ネットワークをトレーニングするための実行可能な代替手段として機能し、実際の顔データセットに関連するプライバシーとバイアスの懸念に効果的に対処する。
大規模な実験を通じて、我々のBFRffusionは、ブラインドフェイス復元のための合成および実世界のパブリックテストデータセットの両方で最先端のパフォーマンスを達成し、PFHQデータセットはブラインドフェイス復元ネットワークをトレーニングするための利用可能なリソースであることを示す。
コード、事前訓練されたモデル、データセットはhttps://github.com/chenxx89/BFRffusion.comでリリースされる。
関連論文リスト
- OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
拡散モデルは、顔の修復において顕著な性能を示した。
顔復元のための新しいワンステップ拡散モデルOSDFaceを提案する。
その結果,OSDFaceは現状のSOTA(State-of-the-art)手法を視覚的品質と定量的指標の両方で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-26T07:07:48Z) - AuthFace: Towards Authentic Blind Face Restoration with Face-oriented Generative Diffusion Prior [13.27748226506837]
ブラインドフェイス修復(BFR)は、コンピュータビジョンにおける基本的な問題である。
最近の研究は、強力な事前訓練されたテキスト・ツー・イメージ(T2I)拡散モデルによる顔画像の先行性に依存している。
本稿では,顔指向生成拡散を先行して探索することにより,顔復元の精度を高めるAuthFaceを提案する。
論文 参考訳(メタデータ) (2024-10-13T14:56:13Z) - DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis [71.40724659748787]
DiffusionFaceは、最初の拡散ベースのフェイスフォージェリーデータセットである。
非条件およびテキストガイドの顔画像生成、Img2Img、Inpaint、Diffusionベースの顔交換アルゴリズムなど、さまざまなフォージェリーカテゴリをカバーする。
重要なメタデータと、評価のための実世界のインターネットソースの偽顔画像データセットを提供する。
論文 参考訳(メタデータ) (2024-03-27T11:32:44Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
本稿では,事前学習したGANの潜時空間における画像の潜時表現を直接最適化するタスク非依存匿名化手法を提案する。
我々は一連の実験を通して、我々の手法が画像の同一性を匿名化できる一方で、顔の属性をより保存できることを実証した。
論文 参考訳(メタデータ) (2023-03-20T17:34:05Z) - A Survey of Deep Face Restoration: Denoise, Super-Resolution, Deblur,
Artifact Removal [177.21001709272144]
顔復元(FR)は、低品質(LQ)入力画像から高品質(HQ)顔を復元することを目的としている。
本稿では,顔修復のための深層学習技術の最近の進歩を包括的に調査する。
論文 参考訳(メタデータ) (2022-11-05T07:08:15Z) - Multi-Prior Learning via Neural Architecture Search for Blind Face
Restoration [61.27907052910136]
Blind Face Restoration (BFR)は、高品質な顔画像から高品質な顔画像を復元することを目的としている。
1)手動チューニングを伴わない強力なネットワークアーキテクチャの導出方法,2) 複数の顔前者からの補完情報を1つのネットワークで取得して復元性能を向上させる方法,の2つの大きな課題がある。
特定検索空間内において,適切な特徴抽出アーキテクチャを適応的に探索する顔復元検索ネットワーク(FRSNet)を提案する。
論文 参考訳(メタデータ) (2022-06-28T12:29:53Z) - Enhancing Quality of Pose-varied Face Restoration with Local Weak
Feature Sensing and GAN Prior [29.17397958948725]
本稿では,前向きに顔の再生を行うブラインド・フェイス・リカバリ・ネットワークを提案する。
我々のモデルは、顔の復元や顔の超解像処理において、従来の技術よりも優れている。
論文 参考訳(メタデータ) (2022-05-28T09:23:48Z) - Towards Real-World Blind Face Restoration with Generative Facial Prior [19.080349401153097]
盲目の顔の復元は通常、現実的で忠実な詳細を復元するために、顔の形状の事前または参照などの顔の優先度に依存します。
本稿では,前訓練顔GANにカプセル化される多彩で多様な前駆体を利用してブラインドフェイス修復を行うGFP-GANを提案する。
本手法は,合成データと実世界データの両方において,先行技術よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2021-01-11T17:54:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。