論文の概要: Design and Implementation of a Tool for Extracting Uzbek Syllables
- arxiv url: http://arxiv.org/abs/2312.15779v1
- Date: Mon, 25 Dec 2023 17:46:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 16:29:30.984530
- Title: Design and Implementation of a Tool for Extracting Uzbek Syllables
- Title(参考訳): ウズベク音節抽出ツールの設計と実装
- Authors: Ulugbek Salaev, Elmurod Kuriyozov, Gayrat Matlatipov
- Abstract要約: シラビフィケーション(Syllabification)は、言語研究、言語技術、教育、および様々な分野に応用された多用途の言語ツールである。
本稿では,ルールベースの手法や機械学習アルゴリズムを含む,ウズベク語のシラビフィケーションに対する包括的アプローチを提案する。
実験の結果,両アプローチは高い精度を示し,99%以上であった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The accurate syllabification of words plays a vital role in various Natural
Language Processing applications. Syllabification is a versatile linguistic
tool with applications in linguistic research, language technology, education,
and various fields where understanding and processing language is essential. In
this paper, we present a comprehensive approach to syllabification for the
Uzbek language, including rule-based techniques and machine learning
algorithms. Our rule-based approach utilizes advanced methods for dividing
words into syllables, generating hyphenations for line breaks and count of
syllables. Additionally, we collected a dataset for evaluating and training
using machine learning algorithms comprising word-syllable mappings,
hyphenations, and syllable counts to predict syllable counts as well as for the
evaluation of the proposed model. Our results demonstrate the effectiveness and
efficiency of both approaches in achieving accurate syllabification. The
results of our experiments show that both approaches achieved a high level of
accuracy, exceeding 99%. This study provides valuable insights and
recommendations for future research on syllabification and related areas in not
only the Uzbek language itself, but also in other closely-related Turkic
languages with low-resource factor.
- Abstract(参考訳): 単語の正確な音節化は、様々な自然言語処理アプリケーションにおいて重要な役割を果たす。
音節化(syllabification)は、言語研究、言語技術、教育、および言語理解と処理が不可欠である様々な分野に応用される多用途言語ツールである。
本稿では,ルールに基づく手法や機械学習アルゴリズムを含む,ウズベク語の音節化に関する包括的アプローチを提案する。
規則に基づく手法では,単語を音節に分割し,線断線や音節数をハイフン化する高度な手法を用いる。
さらに,単語の音節マッピング,ハイフン化,音節数を含む機械学習アルゴリズムを用いて,音節数を予測するデータセットを収集し,提案モデルの評価を行った。
以上の結果から, 両手法の有効性と有効性を示した。
実験の結果,両アプローチは高い精度を示し,99%以上であった。
この研究は、ウズベク語そのものだけでなく、低リソースの要因を持つ他の近縁なテュルク諸語においても、音節化と関連する分野に関する今後の研究のための貴重な洞察と助言を提供する。
関連論文リスト
- Enhancing Multilingual ASR for Unseen Languages via Language Embedding Modeling [50.62091603179394]
最も先進的なASRモデルの1つであるWhisperは99の言語を効果的に扱う。
しかし、ウィスパーは未確認の言語と戦っているが、それらは事前訓練には含まれていない。
本研究では,これらの関係を利用して未知言語上でのASR性能を向上させる手法を提案する。
論文 参考訳(メタデータ) (2024-12-21T04:05:43Z) - Learning Phonotactics from Linguistic Informants [54.086544221761486]
本モデルでは,情報理論的なポリシーの1つに従って,データポイントを反復的に選択または合成する。
提案モデルでは,情報提供者を問う項目の選択に使用する情報理論のポリシーが,完全教師付きアプローチに匹敵する,あるいはそれ以上の効率性が得られることがわかった。
論文 参考訳(メタデータ) (2024-05-08T00:18:56Z) - Introducing Syllable Tokenization for Low-resource Languages: A Case Study with Swahili [29.252250069388687]
トークン化は、文字やサブワードに基づいて単語を分割することができ、言語の構造を最もよく表す単語埋め込みを生成する。
そこで我々は,スワヒリ語に基づく音節トークン化手法を提案し,実験中心の手法を適用した。
論文 参考訳(メタデータ) (2024-03-26T17:26:50Z) - MUST&P-SRL: Multi-lingual and Unified Syllabification in Text and
Phonetic Domains for Speech Representation Learning [0.76146285961466]
言語特徴抽出の方法論として,複数の言語における単語の自動分割に着目した手法を提案する。
本手法は,テキストと音声の両領域において,テキストから音素の書き起こしを抽出すること,ストレスマーク,統合された自動音節分類に重点を置いている。
このシステムはオープンソースのコンポーネントとリソースで構築された。
論文 参考訳(メタデータ) (2023-10-17T19:27:23Z) - Revisiting Syllables in Language Modelling and their Application on
Low-Resource Machine Translation [1.2617078020344619]
シラブルは文字よりも短いシーケンスを提供し、モルヒムよりも特定の抽出規則を必要とせず、そのセグメンテーションはコーパスサイズの影響を受けない。
まず,21言語におけるオープン語彙言語モデリングにおける音節の可能性について検討する。
我々は6つの言語に対して規則に基づくシラビフィケーション手法を使用し、残りはシラビフィケーションプロキシとして機能するハイフン化で対処する。
論文 参考訳(メタデータ) (2022-10-05T18:55:52Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
自己教師付き表現学習法は、幅広いタスクやドメインに利益をもたらす単一の普遍的モデルを約束する。
音声表現学習は、生成的、コントラスト的、予測的という3つの主要なカテゴリで同様の進歩を経験している。
本稿では,自己指導型音声表現学習のアプローチと,他の研究領域との関係について述べる。
論文 参考訳(メタデータ) (2022-05-21T16:52:57Z) - Unsupervised Multimodal Word Discovery based on Double Articulation
Analysis with Co-occurrence cues [7.332652485849632]
ヒトの幼児は、言語に関する最小限の事前知識で口頭語彙を取得する。
本研究では,音声単位を発見するための教師なし学習手法を提案する。
提案手法は教師なし学習を用いて音声信号から単語と音素を取得することができる。
論文 参考訳(メタデータ) (2022-01-18T07:31:59Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
複数の言語をサポートするエンドツーエンドシステムを開発した。
我々は、事前訓練された多言語自然言語処理モデルからの知識を利用する。
論文 参考訳(メタデータ) (2021-09-28T04:43:11Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
本研究では、事前学習された言語モデルを用いて、文章の感情情報を学習し、音声の感情分析を行う。
本稿では,言語モデルを用いた擬似ラベルに基づく半教師付き訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T20:15:21Z) - Leveraging Acoustic and Linguistic Embeddings from Pretrained speech and
language Models for Intent Classification [81.80311855996584]
本研究では,前訓練された音声認識システムから抽出した音響特性と,前訓練された言語モデルから学習した言語特性を用いた新しい意図分類フレームワークを提案する。
ATIS と Fluent 音声コーパスの精度は 90.86% と 99.07% である。
論文 参考訳(メタデータ) (2021-02-15T07:20:06Z) - A Hybrid Approach to Dependency Parsing: Combining Rules and Morphology
with Deep Learning [0.0]
本稿では,特に訓練データ量に制限のある言語に対して,依存関係解析の2つのアプローチを提案する。
第1のアプローチは、最先端のディープラーニングとルールベースのアプローチを組み合わせ、第2のアプローチは、形態情報をネットワークに組み込む。
提案手法はトルコ語向けに開発されたが、他の言語にも適用可能である。
論文 参考訳(メタデータ) (2020-02-24T08:34:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。